
Saath: Speeding up CoFlows by Exploiting the Spatial
Dimension

Akshay Jajoo
Purdue University

Rohan Gandhi
CMU, Microsoft

Y. Charlie Hu
Purdue University

Cheng-Kok Koh
Purdue University

Abstract
CoFlow scheduling improves data-intensive application performance
by improving their networking performance. State-of-the-art CoFlow
schedulers in essence approximate the classic online Shortest-Job-
First (SJF) scheduling, designed for a single CPU, in a distributed
setting, with no coordination among how the flows of a CoFlow at
individual ports are scheduled, and as a result suffer two performance
drawbacks: (1) The flows of a CoFlow may suffer the out-of-sync
problem – they may be scheduled at different times and become
drifting apart, negatively affecting the CoFlow completion time
(CCT); (2) FIFO scheduling of flows at each port bears no notion of
SJF, leading to suboptimal CCT.

We propose SAATH, an online CoFlow scheduler that overcomes
the above drawbacks by explicitly exploiting the spatial dimension
of CoFlows. In SAATH, the global scheduler schedules the flows of a
CoFlow using an all-or-none policy which mitigates the out-of-sync
problem. To order the CoFlows within each queue, SAATH resorts to
a Least-Contention-First (LCoF) policy which we show extends the
gist of SJF to the spatial dimension, complemented with starvation
freedom. Our evaluation using an Azure testbed and simulations of
two production cluster traces show that compared to Aalo, SAATH

reduces the CCT in median (P90) cases by 1.53× (4.5×) and 1.42×
(37×), respectively.

CCS Concepts
• Networks – Cloud computing;

Keywords
CoFlow, data-intensive applications, datacenter networks

ACM Reference Format:
Akshay Jajoo, Rohan Gandhi, Y. Charlie Hu, and Cheng-Kok Koh. 2017.
Saath: Speeding up CoFlows by Exploiting the Spatial Dimension. In Pro-
ceedings of CoNEXT ’17. ACM, New York, NY, USA, 12 pages. https:
//doi.org/https://doi.org/10.1145/3143361.3143364

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5422-6/17/12. . . $15.00
https://doi.org/https://doi.org/10.1145/3143361.3143364

1 Introduction
In analytics at scale, speeding up the communication stage directly
helps to speed up the analytics jobs. In such settings, network-
level metrics such as flow completion time (FCT) do not neces-
sarily improve application-level metrics such as job completion
time [13, 14, 19]. The CoFlow abstraction [13] is proposed to cap-
ture the network requirements of data-intensive applications so that
improving network-level performance directly improves application-
level performance.

In particular, a CoFlow consists of multiple concurrent flows
within an application that are semantically synchronized; the ap-
plication cannot make progress until all flows in a CoFlow have
completed. Since in compute clusters, each job may consist of one or
more CoFlows, and multiple jobs share the network fabric, it raises
the CoFlow scheduling problem with the objective of minimizing
the overall CoFlow Completion Time (CCT) (NP-hard [16, 30]).

State-of-the-art CoFlow schedulers such as Aalo [14] in essence
apply the classic online approximate Shortest-Job-First (SJF) algo-
rithm using priority queues, where shorter CoFlows finish in high
priority queues, and longer CoFlows do not finish in high priority
queues, and are moved to and will finish in low priority queues.

Since a CoFlow has many flows distributed at many network ports,
Aalo approximates the online SJF, designed for a single CPU, in a
distributed setting. It uses a global coordinator to sort the CoFlows
to the logical priority queues based on the progress made (total bytes
sent); the flows of a CoFlow are assigned to the same priority queue
at all network ports. At each port, the local scheduler applies a FIFO
policy to schedule flows in each priority queue.

We make a key observation that this way of dividing the CoFlow
scheduling task fundamentally does not take into account the spatial
dimension of CoFlows scheduling, i.e.,once assigned to the priority
queues, the individual flows of a CoFlow are scheduled without
any coordination until the CoFlow switches the queue or its flows
finish. Such lack of coordination in turn leads to two problems that
negatively impact the quality of the scheduling algorithm.

Out-of-sync problem: First, the flows of a CoFlow at different
ports can get scheduled at different times, which we refer to as the
out-of-sync problem. Since the CCT is determined by the flow that
completes the last, the flows that completed earlier did not help the
CCT, but unnecessarily blocked or delayed the flows of some other
CoFlows in their respective local ports, affecting the CCT of those
CoFlows. Our evaluation using a production cluster trace shows that
the out-of-sync problem is prevalent and severe (§2.3): over 20% of
CoFlows with equal-length flows experience over 39% normalized
deviation in FCT.

439

https://doi.org/https://doi.org/10.1145/3143361.3143364
https://doi.org/https://doi.org/10.1145/3143361.3143364
https://doi.org/https://doi.org/10.1145/3143361.3143364

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Akshay Jajoo et al.

Contention-Oblivion problem: Second, when taking into ac-
count the spatial dimension of CoFlows, we observe that SJF (based
on the total bytes of CoFlows) is not optimal in the first place. In-
tuitively, in a single-CPU job scheduling of N jobs, scheduling any
job to run first will block the same number of other jobs, N − 1. In
scheduling CoFlows across ports, however, since different CoFlows
have different numbers of flows distributed at the ports, scheduling
a different CoFlow (its flows) first can block a different number
of other CoFlows (at the ports where its flows lie). We denote this
degree of competition as CoFlow contention. In other words, the
waiting time of other CoFlows will depend on the duration as well as
the contention of the CoFlow across its ports. Both SJF and Small-
est Effective Bottleneck First (SEBF) [16] only consider CoFlow
duration, and ignore the contention which can result in poor CCT.

In this paper, we propose a new online CoFlow scheduling algo-
rithm SAATH.1 Like Aalo, SAATH is an online CoFlow scheduler
that does not require apriori knowledge of CoFlows. Unlike Aalo,
SAATH explicitly takes into account the spatial dimension in sched-
uling CoFlows to overcome the out-of-sync and contention-oblivion
drawbacks of prior CoFlow scheduling algorithms. SAATH employs
three key ideas. First, it mitigates the out-of-sync problem by sched-
uling CoFlows using an all-or-none policy, where all the flows of a
CoFlow are scheduled simultaneously. Second, to decide on which
CoFlow to schedule first following all-or-none, SAATH implements
contention-aware CoFlow scheduling. As the CoFlow durations are
not known apriori, SAATH adopts the same priority queue struc-
ture as Aalo and starts all CoFlows from the highest priority queue
on their arrival. Instead of FIFO, SAATH schedules CoFlows from
the same queue using Least Contention First (LCoF), where the
contention due to one CoFlow is computed as the number of other
CoFlows blocked on its ports when the CoFlow is scheduled. LCoF
prioritizes the CoFlows of less contention to reduce the total waiting
time. SAATH further uses CoFlow deadlines to avoid starvation. In
contrast, Aalo [14] uses FIFO for online CoFlow scheduling, and
other scheduling policies in Varys [16] (including SEBF) are offline
and require apriori knowledge about CoFlow sizes.

Third, we observe that using the total bytes sent to sort CoFlows
to priority queues ignores the spatial dimension and worsens the
out-of-sync problem. When some flows of a CoFlow are scheduled
due to out-of-sync, that CoFlow will take longer to reach the total-
bytes queue threshold, which leads to other CoFlows being blocked
on those ports for longer durations, worsening their CCT. SAATH

addresses this problem by using a per-flow queue threshold, where
when at least one flow crosses its share of the queue threshold, the
entire CoFlow moves to the next lower priority queue.

Additionally, SAATH handles several practical challenges in sched-
uling CoFlows in compute clusters in the presence of dynamics,
including stragglers, skew and failures.

We implemented and evaluated SAATH using a 150-node pro-
totype deployed on a testbed in Microsoft Azure, and large-scale
simulations using two traces from production clusters. Our evalua-
tion shows that, in simulation, compared to Aalo, SAATH reduces
the CCT in median case by 1.53× and 1.42× (P90 = 4.5× and 37×)
for the two traces while avoiding starvation. Importantly, this CCT

1SAATH implies a sense of togetherness in Hindi.

reduction translates into a reduction in the job completion time in
testbed experiments by 1.46× on average (P90 = 1.86×).

In summary, this paper makes the following contributions:
• Using a production datacenter trace from Facebook, we show

the prevalence of the out-of-sync problem in existing CoFlow
scheduler Aalo, where over 20% of CoFlows with equal-length
flows experience over 39% normalized deviation in FCT.

• We show that the SJF (and also Shortest-Remaining-Time-First)
scheduling policies are not optimal in CoFlow scheduling as
they ignore contention across the parallel ports when scheduling
CoFlows.

• We present the design, implementation and evaluation of SAATH

that explicitly exploits the spatial dimension of CoFlows to
address the limitations of the prior art, and show the new design
reduces the median (P90) CCT by 1.53× (4.5×) and 1.42× (37×)
for two production cluster traces.

2 Background
In this section, we provide a brief background on the CoFlow ab-
straction, the Aalo scheduler, and its limitations.

2.1 CoFlow Abstraction
In data-intensive applications such as Hadoop [1] and Spark [3],
the job completion time heavily depends on the completion time
of the communication stage [10, 15]. The CoFlow abstraction was
proposed to speed up the communication stage [13] to improve
application performance. A CoFlow is defined as a set of flows be-
tween several nodes that accomplish a common task. For example,
in map-reduce jobs, typically a CoFlow is a set of all flows from
all map to all reduce tasks in a single job. The CoFlow Comple-
tion Time (CCT) is defined as the time duration between when the
first flow arrives and the last flow completes. In such applications,
improving CCT is more important than improving the individual
flows completion times (FCTs) to improve the application perfor-
mance [14, 16, 19, 23].

2.2 Aalo Scheduler
A classic way to reduce the overall CCT is SCF (Shortest CoFlow
First) [14, 16] derived from classic SJF (Shortest Job First). However,
using SCF online is not practical as it requires prior knowledge about
the CoFlow sizes. This is further complicated as CoFlows arrive
and exit dynamically and by cluster dynamics such as failures and
stragglers.

Aalo [14] was proposed to schedule CoFlows online without any
prior knowledge. Aalo approximates SCF using: (1) discrete priority
queues, and (2) transitioning the CoFlows across the queues using
the total bytes sent so far by a CoFlow. In particular, Aalo starts all
CoFlows in the highest priority queue and gradually moves them
to the lower priority queue as the CoFlows send more data and
exceed the per-queue thresholds. This design choice facilitates the
completion of shorter CoFlows as known longer CoFlows move to
lower priority queues, making room for potentially shorter CoFlows
in the higher priority queues.

To implement the above online approximate SCF in a distributed
setting, Aalo uses a global coordinator to assign CoFlows to logical
priority queues. At each network port, the individual local ports then

440

Saath CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

(a) Setup (b) Aalo (FIFO) (c) Optimal

Figure 1: The out-of-sync problem in SAATH. The arrival time
for CoFlow C1 < C2 < C3 < C4. The individual CCTs in Aalo
(average=1.75·t) and optimal case (average=1.25·t) are denoted
in Fig (b) and (c).

act independently in scheduling flows in its local priority queues,
e.g., by enumerating flows from the highest to lowest priority queues
and using FIFO to order the flows in the same queue. In doing so,
Aalo is oblivious to the spatial dimension, i.e., it does not coordinate
the flows of a CoFlow across different ports, which leads to two
performance drawbacks.

2.3 Drawback 1: Out-of-Sync Problem
As individual ports locally have flows of different CoFlows, FIFO
can result in the out-of-sync problem, i.e., flows of a CoFlow are
scheduled at different times at different ports, as shown in the exam-
ple in Fig. 1. The out-of-sync problem can substantially worsen the
overall CCT in two ways:

(1) Since the CCT depends on the completion time of the bot-
tleneck (slowest) flow of the CoFlow, even if non-bottleneck
flows of a CoFlow finish earlier, doing so does not improve
the CCT of that CoFlow. Instead, such scheduling could block
other potentially shorter CoFlows at those ports, and hence
worsen their CCT (Fig. 1).

(2) Aalo uses the total bytes sent so far to move CoFlows down
the priority queues which further worsens the above problem.
When only a subset of the flows of a CoFlow are scheduled,
it would take longer to reach the same total-bytes queue-
crossing threshold compared to when all the flows are sched-
uled. Hence, the scheduled flows occupy their ports for longer
time, which does not improve their CCT, yet may worsen the
CCT of other CoFlows that otherwise could have been sched-
uled.

To understand the extent of the out-of-sync problem, we analyze
the variance of the flow completion time of each CoFlow under Aalo,
using a trace from Facebook clusters [4]. First, Fig. 2(a) plots the
distribution of the number of flows per CoFlow, and Fig. 2(b) plots
the distribution of the standard deviation of flow lengths per CoFlow,
normalized by its average flow length. We see that in the FB trace,
23% of the CoFlows have a single flow, 50% have multiple, equal-
length flows, and the remaining 27% have multiple, unequal-length
flows. We then plot the standard deviation of FCT of each of the
multi-flow CoFlows, normalized by the average FCT of its flows.
We note that the flows of a CoFlow can be of uneven length, which
can contribute to uneven FCT. To isolate this factor, in Fig. 2(c),
we separately show this distribution for CoFlows with equal and
unequal flow lengths (excluding single-flow CoFlows). We see that

(a) Distribution of CoFlow width

(b) Normalized standard deviation of flow lengths

(c) Normalized standard deviation in FCTs for Aalo

Figure 2: The out-of-sync problem in Aalo. (a) Distribution of
number of flows in a CoFlow. (b) Distribution of standard de-
viation of flow lengths normalized by the average flow length,
per CoFlow. (c) Distribution of normalized standard deviation
of FCTs for multi-flow CoFlows under Aalo. In (c), we have ex-
cluded the CoFlows with single flows (23%).

the out-of-sync problem under Aalo is severe: the FCT of 50% (20%)
of the equal-flow-length CoFlows have over 12% (39%) normalized
deviation, and of the CoFlows with multiple, uneven-length flows,
50% (20%) have over 27% (50%) normalized deviation in FCT.

2.4 Drawback 2: SJF is Sub-optimal for CoFlows
Assuming that the flows of each CoFlow are now scheduled in
synchrony, the coordinator still needs to decide which CoFlows
should go first to reduce the overall CCT. SCF derived from SJF has
been a de-facto policy [14, 19]. We observe that SCF based on the
total bytes sent by CoFlows is not optimal in CoFlow scheduling
even in the (ideal) offline settings when the CoFlow sizes are known
apriori. Similarly, even the Shortest-Remaining-Time-First (SRTF)
which improves SJF by allowing preemption is not optimal even
when CoFlow sizes are known apriori. The key reason is that these
scheduling policies are designed for scheduling jobs serially on a
single work engine. They are oblivious to the spatial dimension
of CoFlows, i.e., different flows of a CoFlow may be scheduled
concurrently and contend with different numbers of other CoFlows
(empirically proven in Appendix). Intuitively, two CoFlows C1 and
C2 with durations t1 and t2 may block k1 and k2 other CoFlows when
their flows are scheduled across individual ports. For example, in

441

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Akshay Jajoo et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

C
D

F

Speedup over Aalo

SCF
SRTF
LWTF

(a) Speedup in CCT

 0

 10

 20

 30

 40

 50

SCF SRTF LWTF

S
p

e
e

d
u

p
 (

%
)

(b) Overall CCT

Figure 3: Comparing CCT speedup using SCF, SRTF and
LWTF over Aalo assuming flow statistics are known. The curves
for SRTF and LWTF overlap in (a). Overall CCT in (b) is the
average CCT for all CoFlows.

Fig. 1, k1=1, k2=3, k3=k4=1. Thus, the increase of the total waiting
time of other CoFlows when scheduling C1 and C2 would be t1 · k1
and t2 · k2, respectively. SJF and SRTF only consider t1 and t2,
and miss out the k1 and k2 factors, which can result in higher total
waiting time for the rest of CoFlows and thus sub-optimal CCT.

As a quick evidence that SJF is not optimal for CoFlow schedul-
ing, we compare it with a Least-Waiting-Time-First (LWTF) policy.
In LWTF, the CoFlows are sorted based on the increase in the to-
tal waiting time of other CoFlows, i.e., t · k. We then compare
the improvement of the CCT of individual CoFlows as well as the
overall CCT under LWTF, SCF and SRTF over Aalo in the ideal
offline settings where the CoFlow sizes are known, using the FB
trace. Fig. 3 shows LWTF outperforms SRTF and SCF, suggesting
SCF and SRTF are not optimal, and considering contention when
scheduling CoFlows leads to better CCT.

3 Key Ideas
To address the two limitations of Aalo, we propose a new online
CoFlow scheduler called SAATH that explicitly takes into account the
spatial dimension of CoFlows, i.e., the flows of each CoFlow across
different network ports. Specifically, SAATH directly tackles the
two limitations of Aalo: (1) the out-of-sync problem is mitigated by
scheduling all flows of a CoFlow together; (2) the contention among
CoFlows across the ports is explicitly considered in scheduling
CoFlows. In the following, we detail on these core ideas that shape
the SAATH design.

(1) All-or-none: The first key idea in SAATH is to schedule the
CoFlows using an all-or-none policy, i.e., either all the flows of
a CoFlow are scheduled together, or none. This design choice ef-
fectively alleviates the out-of-sync problem in Aalo, as the ports
that used to schedule a subset of flows of a CoFlow early can now
delay scheduling them, without potentially inflating the CCT of
that CoFlow, since its CCT depends on the completion of its last
flow. The scheduling slots at those ports can be used for some other
CoFlows, potentially improving their CCT.

Our key insight is that, in the context of conventional flow sched-
uling, typically the FCT of one flow cannot be improved without
degrading the FCT of another flow [22]. However, this is not true
in the context of CoFlows, as the CCT of a CoFlow comprising of
many flows depends on the completion of the last flow, and thus a
delay in the earlier finishing flows of a CoFlow should not inflate its
CCT but could improve the CCT of other CoFlows. In doing so, the
CCT of one CoFlow can be improved without worsening the CCT
of other CoFlows.

P1

P2

P3

C1 C2

C2 C3

C1 C3

Sender
Ports

Q0

Q0

Q0

(a) Setup

Time

C1

C1

C2

C2

P1

P2

P3

t 2t

CCT:
C1 = t, C2 = 2t, C3 = 3t

C3

C3

3t

(b) All-or-none

Time

C1 C2 P1

C2 C3 P2

C1 C3 P3

t 2t

CCT:
C1 = t , C2 = 2t, C3 = 2t

(c) All-or-none + Work-
conservation

Figure 4: Unused ports in all-or-none can elongate CCT as in
(b), with average CCT = 2·t. (c) Work-conservation can speedup
CoFlows (average CCT = 1.67·t).

However, all-or-none alone can potentially result in poor port
utilization because it requires all ports of a CoFlow to be available
when scheduling; if not all ports needed by a CoFlow are available,
they may be all sitting idle as shown in the example in Fig. 4(b).
SAATH carefully designs the work conservation scheme to schedule
additional flows at ports that are otherwise left idle, as shown in
Fig. 4(c) (§4.2).

One may observe that, as shown in Fig. 4(c), applying work
conservation appears to break away from all-or-none. We argue that
it does not re-create the out-of-sync limitation in Aalo. Recall that
the out-of-sync limitation in Aalo was caused due to scheduling a
CoFlow at a time slot that otherwise could have been used for a
potentially shorter CoFlow. In SAATH, work-conservation schedules
a CoFlow in an otherwise empty time slot, which does not push back
other CoFlows. Instead it will only speed up the CoFlows.

We note that if the flow lengths in a CoFlow are skewed, all-or-
none may not finish all the flows of a CoFlow together. Since SAATH

is an online CoFlow scheduler, it does not know the flow lengths
beforehand. As a result, in some cases, it may end up delaying
scheduling a longer flow to align with other flows, which may delay
completion of that flow and worsen the CCT of the CoFlow. Our
evaluation (§6.2) shows that such cases are rare, and overall all-or-
none improves CCT.

(2) Faster CoFlow-queue transition: Since the flow durations
are not known apriori, like Aalo, SAATH uses the priority queue
structure to approximate the general notion of Shortest CoFlow First,
by helping shorter CoFlows finish (early) in high priority queues.

The key challenge in priority queue-based design is to quickly
determine the right queue of the CoFlow, so that the time that longer
CoFlows contend with the shorter CoFlows is minimized. Like Aalo,
SAATH starts all the CoFlows from the highest priority queue. Unlike
Aalo, SAATH uses per-flow queue thresholds. When an individual
flow of a CoFlow reaches its fair share of the queue threshold before
others, e.g., from work conservation, we move the entire CoFlow to
the next lower priority queue.

In essence, if a CoFlow is expected to cross the queue threshold,
using per-flow queue thresholds effectively speeds up such queue
transition as shown in Fig. 5, where a CoFlow is transitioned to the
next queue in time t instead of 2 · t as in Aalo. Such faster queue
transition has an immediate benefit: it frees the ports where the
remaining flows of that CoFlow are falling behind sooner, i.e., by
moving them to the next lower priority queues at their corresponding

442

Saath CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

Sender
Ports

P1

P2

P3

C1 C2

C2

C2 P4

C1 C2

(a) Setup

P2
P3
P4

P1
2t

(b) Aalo

P2
P3
P4

P1

(c) SAATH

t

Figure 5: Fast queue transition in SAATH. (a) CoFlow organiza-
tion. (b) Transition for C1 and C2 in Aalo. Assume the queue
threshold is bandwidth · 4t . C2 takes 2t time units to reach the
threshold as 2 ports (out of 4) are sending data. (c) Fast queue
transition in SAATH. The per-flow queue threshold for C2 is
bandwidth · t as there are 4 flows, and it takes t time units to
reach the threshold.

ports, so that other high priority CoFlows could be scheduled sooner,
potentially improving their CCT.

In SAATH, we calculate the fair share threshold by simply splitting
the queue threshold equally among all the flows of a CoFlow. More
sophisticated ways can be used in clusters with skewed flow duration
distribution.

(3) Least-Contention-First policy within a queue: Once the
CoFlows are assigned to the priority queues, the next challenge is to
order and schedule the CoFlows from the same queue. In SAATH,
we propose the Least-Contention-First (LCoF) policy, where the
contention of a CoFlow is calculated as the number of other CoFlows
blocked when that CoFlow is scheduled at all of its ports.2 Under
LCoF, all the CoFlows in each queue are sorted according to the
increasing order of contention, and the scheduler scans the sorted
list from each queue, starting from the highest priority queue, and
schedules the CoFlow that competes against the least number of
other CoFlows, as long as there is enough port bandwidth remaining.
In essence, by scheduling CoFlows in the LCoF manner, SAATH

allows more CoFlows (who have less contention) to be scheduled in
parallel in conforming to all-or-none and hence more CoFlows to
finish earlier. Our evaluation results (Fig. 10) confirm that SAATH

gains significant improvement by use of LCoF.
In summary, SAATH improves the CCT of the CoFlows from the

same priority queue using LCoF and all-or-none, and accelerates the
CoFlow queue transition using per-flow queue thresholds to further
improve the overall CCT.

4 Online Scheduler Design
In addition to the three key ideas for improving CCT, SAATH also
needs to (1) provide starvation-free guarantee for continuous progress,
as LCoF can indefinitely delay scheduling a CoFlow that always has

2We note the contention thus defined is an approximation to the impact scheduling
that CoFlow does to the overall CCT, which should be weighted by the remaining flow
lengths of the CoFlow, which however is not known.

S1

S2

R1

R2

.

.

.

.

Global
Co-ordinator

• Schedule CoFlows

.

.

.

.

Local
Agent

CoFlow operations

Task-1

Task-n

Q-n

. .

Flows

queues

Q-0

Traffic
statistics CoFlow

schedule

X
DC Fabric

Framework

Figure 6: SAATH architecture.

higher contention than other CoFlows, and (2) speed up CoFlows
during cluster dynamics such as node failures and stragglers.

In this section, we present the detailed SAATH design to overcome
these challenges. The key design features in SAATH are summarized
as follows:
(1) All-or-none: mitigates the out-of-sync problem;
(2) Per-flow queue threshold: speeds up queue transition;
(3) LCoF: orders CoFlows within a queue in a contention-aware

manner;
(4) Work-conservation: improves port utilization and the overall

CCT;
(5) Handling cluster dynamics: speeds up the flows of a CoFlow

due to dynamics such as failures and stragglers by moving the
CoFlow back to higher priority queues;

(6) Starvation-free: provides starvation-free guarantees.

4.1 SAATH Architecture
Fig. 6 shows the SAATH architecture. The key components are the
global coordinator and local agents running at the individual ports.
A computing framework such as Hadoop or Spark first registers
(removes) the CoFlows when a job arrives (finishes). At every fixed
scheduling interval, the global coordinator computes the schedule
for all the ports based on the CoFlow information from the frame-
work and flow statistics sent by the local agents (which update the
global coordinator at each scheduling interval, details in §4.2). The
coordinator then pushes the schedule back to the local agents. Lo-
cal agents maintain the priority queues and use them to schedule
CoFlows. They continue to follow the current schedule until a new
schedule is received from the global coordinator.

SAATH uses the same queue structure as Aalo, and has the same
parameter settings . In SAATH, there are N queues,Q0 toQN−1, with
each queue having lower queue threshold Qlo

q and higher threshold
Qhi
q , and Qlo

0 = 0, Qhi
N−1 = ∞, Qlo

q+1 = Qhi
q . SAATH uses exponen-

tially growing queue thresholds, i.e., Qhi
q+1 = E · Qhi

q .

443

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Akshay Jajoo et al.

1: procedure SCHEDULE((CoFlows C))
2: AssignQueue(C) ▷ Assign queues
3: for q in Q do
4: L = SortLCoF(C, q) ▷ Sort using LCoF
5: missed = {}
6: for CoFlow c in L do
7: if AllOrNoneSchedule(c) then
8: rate = min. available rate for all flows
9: for flow f in c do f.rate = rate

10: UpdateAvailableBandwidthForSenders(c)
11: UpdateAvailableBandwidthForReceivers(c)
12: else
13: missed.add(c)
14: WorkConservation(missed)
15: procedure ASSIGNQUEUE((C))
16: for c in C do
17: c.queue = GetQueue(c.width,c.maxFlowLength)
18: procedure WORKCONSERVATION(Cm)
19: for c in Cm do
20: for f in c do
21: f.rate = min(f.sender.remainBW, f.receiver.remainBW)
22: UpdateAvailableBandwidthForSenders(c)
23: UpdateAvailableBandwidthForReceivers(c)

Figure 7: SAATH scheduling algorithm.

4.2 SAATH Scheduler
Fig. 7 shows the scheduling algorithm used by the global coordinator
to periodically compute the schedule to minimize the CCT using
all-or-none, per-flow queue threshold, and LCoF, and to provide
starvation-free guarantee.

Input: The input to the algorithm includes (1) the set of CoFlows
(C), (2) traffic sent by the longest flow of every CoFlow (tc,f),
(3) starvation-free deadline (dc), (4) the ports used by individual
CoFlows (pc,p), (5) Total capacity (bandwidth) available at pth port
(Bp).

We calculate kc , the number of CoFlows contending with the c-th
CoFlow across all the ports. This is used in implementing the LCoF
policy.

Output: f.rate, i.e., the bandwidth assigned to each CoFlow at
each port.

Objective: Minimize the average CCT.
D1. Overall algorithm: (1) First, the coordinator determines the

queue of the CoFlows based on the maximum data sent by any flow
of a CoFlow, i.e.,mc =max(∀f ∈fc , tc,f) and per-flow threshold (see
D3, D4) (line 2). (2) Next, it sorts the CoFlows, starting from the
highest priority queue to the lower priority queues. (3) Within each
queue, it sorts the CoFlows using LCoF, i.e., based on their kc values
(line 3:4). (4) It then scrolls through CoFlows one by one, and if all
the ports of a CoFlow (sender and receiver) have available bandwidth
(line 7), the CoFlow is scheduled. SAATH assigns the bandwidth as
discussed in D2 below, based on which the port allocated bandwidth
is incremented (line 9, 10). If any of the ports are un-available,
the coordinator skips that CoFlow and moves to the next CoFlow.
(5) The algorithm terminates when all CoFlows are scanned or all
bandwidth is exhausted by work conservation (see D4 below).

D2. Assigning flow bandwidth: As in MADD [16], SAATH as-
signs equal rates (bandwidth) at the ports as there is no benefit in

speeding-up flows at certain ports when the CCT depends on the
slowest flow. At a port, we use max-min fairness to schedule the
individual flows of a CoFlow (to different receivers). Hence, the rate
of the slowest flow is assigned to all the flows in the CoFlow, and
the port-allocated bandwidths at the coordinator are incremented
accordingly.

D3. Determining CoFlow queue: Similar to Aalo, SAATH uses
exponentially growing queue thresholds. To realize faster queue
transition, we divide the queue threshold (Qhi

q) equally among all
the flows (flow count = Nc) of a CoFlow. For example, when a
queue threshold is 200MB, a CoFlow with 100 flows has a per-flow
queue threshold of 2MB. SAATH assigns CoFlow to a queue based
on the maximum data sent by any of its flows, using Eq. (1):

Qhi
q−1
Nc

≤ mc ≤
Qhi
q

Nc
(1)

D4. Work conservation: When following the all-or-none policy,
it is possible that some of the ports do not have flows scheduled (§3);
these ports can be used to schedule CoFlows outside all-or-none,
triggering work conservation (line 14, 18-23). In work conservation,
the CoFlows are scheduled based on the ordered list of the un-
scheduled CoFlows.

D5. Starvation Avoidance: Recall that FIFO provides starvation-
free guarantee as every flow in a queue is guaranteed forward
progress [14]. Such guarantees are not offered by LCoF. To avoid
starvation, the coordinator sets a deadline for each CoFlow. Impor-
tantly, this deadline is derived based on FIFO. Whenever a CoFlow
arrives in a queue, a fresh deadline is set for it. For that, the coordina-
tor first generates FIFO ordering at all ports by enumerating all the
CoFlows in that queue. If there are Cq CoFlows in the queue, and t
is the minimum time a CoFlow needs to spend in the queue based
on the queue threshold, the deadline for the new CoFlow for that
queue is set to d ·Cq · t , where d is a constant (d = 2 in our prototype
§6). SAATH then prioritizes the CoFlows that reach their deadlines.
Essentially, SAATH provides the same deadline guarantee (within a
factor of d) as a FIFO based scheduler.

4.3 Handling Cluster Dynamics
Compute clusters in datacenters frequently undergo a variety of dy-
namics including node failures and network congestion. Moreover,
even individual jobs may experience stragglers and data skew, mul-
tiple stages and waves. In this section, we detail on how SAATH

adapts to such dynamics to reduce their impact on the CCT.
Improving tail due to failures, stragglers, skew: Cluster dy-

namics such as node failures and stragglers can delay some flows
of a CoFlow, which can result in poor CCT as CCT depends on
the completion of the last flow. We observe in such cases, some
flows of the CoFlow may have already finished. In such cases, we
heuristically make use of the flow length of the completed flows to
approximate the SRTF policy to potentially speed up such CoFlows,
as follows: (1) the coordinator estimates the length of unfinished
flows of a CoFlow using the median flow length of its currently
finished flows (fe). (2) It estimates the remaining flow lengths for
straggling/restarted flows f r emi = fe − fi , where fi is the flow length
so far for the i-th unfinished flow. (3) It estimates the remaining time
of a CoFlow asmc =max(f r emi) since the CCT depends on the last
flow, and usesmc to re-assign the CoFlow to a queue using Eq. 1.

444

Saath CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

The intuition behind the optimization is that, once some of the
flows finish, we no longer need to use the priority queue thresholds
to estimate flow lengths – we can simply use mc as above. The
benefit of this approximated SRTF policy is that SAATH can move
up a CoFlow from low to high priority queues when its flows start
to finish; as the remaining flows send more data, fi increases and
thus f r emi decreases. Moving the CoFlow to a higher queue will
accelerate its completion, while following SRTF. We note that cal-
culating fe as the median of the finished flows is a heuristic; more
sophisticated schemes such as Cedar [25] can be used to estimate
flow lengths, which we leave as future work.

In contrast, Aalo does not move the CoFlow to the higher priority
queues even when fewer and fewer flows are pending, because
CoFlow is assigned to a queue based on the total bytes sent so
far, which only grows as the flows of a CoFlow send more data.

Scheduling Multi-stage DAG and multiple waves: Often times,
a single analytics query consists of multiple co-dependent stages,
where each stage has multiple jobs. Such queries are represented as
a Directed Acyclic Graph (DAG) to capture the dependencies (e.g.,
Hive [2] on Hadoop or Spark). The DAG representation is available
before the start of the query while the scheduler builds the query
plans. In SAATH, instead of having one CoFlow for every job in a
stage, we have one CoFlow for every stage. This optimization helps
SAATH to slow down some of the fast jobs in one stage without
affecting the overall completion time, as the completion of the DAG
stage depends on the completion of the slowest job in that stage.

Similarly, a single MapReduce job may have its map and reduce
tasks scheduled in multiple waves, where a single wave only has a
subset of the map or reduce tasks. We represent such cases again as
a DAG, where a single wave is represented as a single CoFlow, and
the DAG consists of serialized stages, each with one single CoFlow.
In such cases, the goal of DAG scheduling is the same as the CoFlow
scheduling, and the same CoFlow scheduling design can be used.

Un-availability of the data: Another important challenge is that
the data may not always be available in the communication stage as
the computing frameworks often pipeline the compute and communi-
cation stages [34], i.e., the subset of the data is sent from one phase
to another as soon as it becomes available, without waiting for the
completion of the whole stage. In such frameworks, not all flow data
is always available [34] due to some slow or skewed computation.
If the coordinator schedules a CoFlow when some of its data is not
available, that time slot is wasted.

To address this problem, in SAATH, the ports first accumulate
enough data on each of the flows of the CoFlow for one δ , i.e., the
interval at which local agents co-ordinate with the coordinator, and
explicitly notify the coordinator when such data is available. This
information is piggybacked in the flow statistics sent periodically
and thus has minimal overhead. The coordinator only schedules the
CoFlows that have enough data to send.

4.4 LCoF Limitation
Although LCoF substantially outperforms other scheduling policies
(§6, §7), there are rare cases where LCoF performs worse. The key
reason is that LCoF schedules CoFlows based on the contention;
if there are CoFlows that have less contention but are longer in
size, scheduling such CoFlows using LCoF would be sub-optimal as

Senders

S1
C2

S2
C2

(c) Optimal

(b) SAATH

(a) Set up

C3

C1

S2

S1

2.5t

C2 C1

C2 C3

3.5t

S2

S1

t

C2 C1

C2 C3

3.5t

Figure 8: LCoF limitations. (a) shows the setup, CoFlow dura-
tions, (b) and (c) show the CoFlow progress in SAATH and opti-
mal. The average CCT in (b) is 2.5+2.5+3.5

3 = 2.83, and in (c) is
1.0+3.5+3.5

3 = 2.66.

shown by the example in Fig. 8. However, our trace shows that such
CoFlows only constitute a minor fraction of the total CoFlows (§6.2,
bin-2 in Fig. 11 and Fig. 12), and hence their impact is dwarfed by
the improvements on other CoFlows from using LCoF.

5 Implementation
We implemented SAATH consisting of the global coordinator and
local agents (Fig. 6) in 5.2 KLoC in C++.

Coordinator: The coordinator schedules the CoFlows based on
the operations received from the framework and traffic statistics
from the local agents. The key implementation challenge for the
coordinator is that it needs to be fast in computing and updating
the schedules. The SAATH coordinator is multi-threaded and is opti-
mized for speed using a variety of techniques including pipelining,
process affinity, and concurrency whenever possible.

Conceptually, the coordinator computes new schedules in fixed
intervals e.g., the time required to send 1MB at a port, which is
8ms with our setting. In practice, due to the delay in computing and
propagating the schedules, the coordinator and local agents work
in a pipelined manner. In each interval, the coordinator computes a
new schedule consisting of the CoFlow order and flow rates, based
on the flow stats received during the previous interval, and pushes
them to local agents right away. How local agents react is described
below.

Since the coordinator makes scheduling decisions on the latest
flow stats received from the local agents, it is stateless, which makes
it easy for the coordinator to recover from failures. When the coordi-
nator fails, new deadlines are calculated for each CoFlow.

Local agents: Upon receiving a new schedule from the coordi-
nator, each local agent schedules the flows accordingly, i.e., they
comply to the previous schedule until a new schedule is received.
In addition, the local agents periodically, at the same frequency
at which the coordinator calculates new schedules, send the rel-
evant CoFlow statistics, including per-flow bytes sent so far and
which flows finished in this interval, to the coordinator. To inter-
cept the packets from the flows, local agents require the compute
frameworks to replace datasend(), datarecv() APIs with
the corresponding SAATH APIs, which incurs very small overhead.
Lastly, the local agents are optimized for low CPU and memory

445

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Akshay Jajoo et al.

overhead (evaluated in §7.3), enabling them to fit well in the cloud
settings [27].

CoFlow operations: The global coordinator runs independently
from, and is not coupled to, any compute framework, which makes it
general enough to be used with any framework. It provides RESTful
APIs to the frameworks for CoFlow operations: (a) register() for
registering a new CoFlow when it enters, (b) deregister() for
removing a CoFlow when it exits, and (c) update() for updating
CoFlow status whenever there is a change in the CoFlow structure,
particularly during task migration and restarts after node failures.

6 Simulation
We evaluated SAATH using a 150-node testbed cluster in Azure that
replays the Hive/MapReduce trace from Facebook (FB). In addition,
we evaluate SAATH using large-scale simulations using traces from
production clusters of Facebook and a large online service provider
(OSP). The FB trace is for 150 ports and is publicly available at [4].
The OSP trace is from a Microsoft cluster and has O(1000) jobs
collected from O(100) ports.3 The highlights of these evaluation are:

• SAATH significantly improves the overall CCT. In simulation
using the FB trace, the CCT is improved by 1.53× in the me-
dian case (P90 = 4.50×). For the OSP trace, the improvements
in CCT are 1.42× in the median case (P90 = 37.2×).

• In testbed experiments, compared to Aalo, SAATH improves
job completion time by 1.46× on average (P90 = 1.86×);

• The SAATH prototype is fast and has small memory and CPU
footprints;

• The breakdown of the improvement justifies the effectiveness
of LCoF, all-or-none, and faster queue transition design ideas.

We present detailed simulation results in this section, and the
testbed evaluation of our prototype in §7.

Setup: In replaying the traces (FB and OSP), we maintain the
same flow lengths and flow ports. The default parameters in the
experiments are: starting queue threshold (Qhi

0) is 10MB, exponen-
tial growth factor (E) is 10, the number of queues (K) is set to 10,
and the new schedule calculation interval δ is set to 8ms. Our sim-
ulated cluster uses the same number of nodes (network ports) and
link capacities as per the trace. We assume full bisection bandwidth
supporting 1 Gbps/port is available, and congestion can happen only
at the network ports. The simulator is written in 4 KLOC in C++.

We compare SAATH against two start-of-the-art CoFlow sched-
ulers, Aalo and Varys, which are open-sourced [6]. All the exper-
iments use the above default parameters including K ,E, S , unless
otherwise stated. Since Varys does not use multiple queues, there is
no use of queueing parameters for Varys related experiments.

6.1 CCT Improvements
We first compare the speedup of SAATH over other scheduling
policies. We define the speedup using SAATH as the ratio of the
CCT under other policy to the CCT under SAATH for individual
CoFlows. The results are shown in Fig. 9. The Y-axis denotes the
median speedup, and error bars denote the 10-th and 90-th percentile
speedups. We show the results for the FB and OSP traces. The key

3We cannot specify the exact numbers for proprietary reasons, which are also excluded
from Fig. 2 in §2.

 0.1

 1

 10

SEBF
(Offline)

Aalo
(Online)

UC-TCP
(Online)

154x121x

S
p
e
e
d
u
p

OSP
FB

Figure 9: Speedup using SAATH over other scheduling policies.
SAATH achieves speedup of 154× and 121× (median) over UC-
TCP for two traces.

Table 1: Bins based on total CoFlow size and width.
width ≤ 10 width > 10

size ≤ 100MB bin-1 bin-2
size > 100MB bin-3 bin-4

observation is that SAATH improves the CCT over Aalo by 1.53×
(median) and 4.5× (P90) for the FB trace, and 1.42× (median) and
37.2× (P90) for the OSP trace. Interestingly, SAATH achieves the
speedup close to that of SEBF in Varys [16] even though SEBF runs
offline and assumes the CoFlow sizes are known apriori, whereas
SAATH runs online without apriori CoFlow knowledge.

The higher speedup at P90 for the OSP trace over the FB trace
is attributed to larger improvement to the CCT of small and narrow
CoFlows using all-or-none and LCoF (§6.2). We observe that the
ports are busier (i.e., having more CoFlows queued at individual
ports) for the OSP trace than the FB trace, which when coupled
with FIFO in Aalo, amplifies the waiting time for short and nar-
row CoFlows in the OSP trace. In contrast, LCoF facilitates such
CoFlows, resulting in dramatic reduction in their waiting time.

We also compare SAATH against an un-cordinated CoFlow sched-
uler (UC-TCP) under which individual ports independently schedule
the arriving CoFlows without any global coordinator. In UC-TCP,
there are no queues, and all the flows are scheduled upon arrival as
per TCP. Lack of coordination, coupled with lack of priority queues
severely hampers the CCT in UC-TCP. SAATH achieves a median
speedup of 154× and 121× over UC-TCP in the FB and OSP traces,
respectively.

These results show that SAATH is effective in accelerating the
CoFlows compared to Aalo, and is close in performance compared
to Varys which assumes prior knowledge of CoFlow lengths, and
achieves high speedups compared to other un-coordinated scheduler.

6.2 Impact of Design Components
In this experiment, we evaluate the impact of the individual design
components on the speedup in CCT over Aalo. The results are shown
in Fig. 10. To better understand the impact, we also show the CCT
improvement grouped into different bins based on their width and
size of the CoFlows (Table 1) in Fig. 11 and Fig. 12. We make the
following key observations.

First, only using all-or-none (A/N) and FIFO, i.e., without LCoF
and per-flow queue threshold (P/F), the speedup over Aalo using

446

Saath CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

 0

 0.5

 1

 1.5

 2

A/N + FIFO A/N + PF + FIFO (SAATH)
A/N + PF + LCoF

S
p

e
e

d
u

p
 o

v
e

r
A

a
lo OSP

FB

Figure 10: SAATH speedup breakdown across 3 complimentary
design ideas. Y-axis shows the median speedup. Abbreviations:
(1) A/N: all-or-none, (2) PF: per-flow queue threshold, (3) LCoF:
Least-Contention-First.

 0

 0.5

 1

 1.5

 2

 2.5

Bin-1(54%) Bin-2(14%) Bin-3(12%) Bin-4(20%)

S
p

e
e

d
u

p
 o

v
e

r
A

a
lo

A/N+FIFO
A/N+FIFO+P/F

(SAATH) A/N + PF + LCoF

Figure 11: SAATH speedup breakdown into bins based on size
and width shown in table 1 for FB trace. The numbers in x-
label denote fraction of all CoFlows in that bin. Y-axis shows
the median speedup.

 0

 0.5

 1

 1.5

 2

 2.5

Bin-1 Bin-2 Bin-3 Bin-4

S
p

e
e

d
u

p
 o

v
e

r
A

a
lo

A/N+FIFO
A/N+FIFO+P/F

(SAATH) A/N + PF + LCoF

Figure 12: SAATH speedup breakdown into bins based on size
and width shown in table 1 for OSP trace. We omit the distri-
bution of CoFlows in individual bins for proprietary reasons.
Y-axis shows the median speedup.

FB (OSP) trace is 1.13× (1.1×) in median case and 3.05× (7.2×) at
P90. Fig. 11 and Fig. 12 show that all-or-none is effective for small,
thin CoFlows, i.e., CoFlows with fewer flows, as the probability of
finding all the ports available is higher. For other bins, the benefits
are lower due to the use of FIFO, where a wide CoFlow causes
Head-of-Line (HoL) blocking other potentially short CoFlows.

Second, while all-or-none only addresses one limitation of the out-
of-sync problem, using per-flow queue thresholds (P/F) addresses
the second limitation of out-of-sync problem by quickly jumping
the queues (§3). As a result, A/N+P/F improves the speedup over
Aalo in the FB (OSP) trace to 1.3× (1.32×) in the median case, and
3.83× (13×) at P90.

We again zoom into the improvement in using P/F on CoFlows in
different bins, shown in Fig11 and Fig. 12. P/F is highly effective for
CoFlows in bins 2 and 4, which are wider (width > 10). The larger
numbers of flows in these wider CoFlows increase the chance of at
least one flow crossing the per-flow queue threshold and thus move
the CoFlows to the next queues faster.

Figure 13: Normalized standard deviation of FCTs of multi-
flow CoFlows, under SAATH and Aalo using FB trace. We have
excluded the CoFlows with width = 1 (23.5%).

Third, we replace FIFO with LCoF and retain A/N and P/F from
previous experiment. This combines all the three complimentary
ideas in SAATH, and is labeled as SAATH in Fig. 10. We see that us-
ing LCoF achieves a median speedup over Aalo of 1.53× (P90=4.5×)
for the FB trace, and of 1.42× (P90=37×) for the OSP trace. This is
primarily because LCoF schedules CoFlows using Least Contention
First and reduces the HoL blocking in FIFO. As shown in Fig. 11
and Fig. 12, LCoF improves the CCT of CoFlows in all bins. Par-
ticularly, it substantially benefits short and thin CoFlows (bin-1), as
HoL blocking due to FIFO blocks these CoFlows the most, without
significantly impacting the CoFlows in other bins. This shows that
LCoF on top of all-or-none is effective.

Lastly, Fig. 13 shows the CDF of the standard deviation of FCTs
of individual CoFlows with more than one flow under SAATH and
Aalo for the FB trace. We show results separately for CoFlows with
equal and unequal flow length. We see that SAATH significantly
reduces the variation in FCTs: 40% of CoFlows with equal flow
lengths finished their flows at the same time, as opposed to 20% in
Aalo, and 71% of them had normalized FCT deviation under 10%,
compared to 47% in Aalo. We note that SAATH does not completely
eliminate the out-of-sync problem because of work conservation
(§3). We do not show the results for the OSP trace for proprietary
reasons.

6.3 Sensitivity Analysis
We next evaluate the sensitivity of SAATH and Aalo to various design
parameters. Due to space limitation, we only show the results for the
FB trace. The results for the OSP trace are similar.

Start queue threshold (S): In this experiment, we vary queue
threshold of the starting (highest priority) queue, which controls how
long CoFlows stays in the starting queue. Fig. 14(a) shows that Aalo
is highly sensitive to S . This is because as S grows, more CoFlows
stay in the highest priority queue, and Aalo performs worse due to
HoL blocking under FIFO, which is addressed by LCoF in SAATH.
In contrast, SAATH is relatively insensitive to S , precisely because
LCoF alone addresses the HoL blocking weakness of FIFO.

Multiplication factor (E): In this experiment, we vary the queue
threshold growth factor E from 2 to 32. Recall that the queue thresh-
olds are computed as Qhi

q = Q
hi
q−1 · E. Thus, as E grows, the number

of queues decreases. As shown in Fig. 14(b), SAATH and Aalo are
both insensitive to E.

Synchronization interval (δ): Recall that the global coordinator
calculates a new schedule every δ interval. In this experiment, we

447

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Akshay Jajoo et al.

 0

 0.5

 1

 1.5

 2

10MB 100MB 1GB 10GB 100GB 1TB

S
p

e
e

d
u

p
 o

v
e

r
A

a
lo Saath Aalo

(a) Start Queue Threshold (S)

 0

 0.5

 1

 1.5

 2

2 5 10 16 32

S
p

e
e

d
u

p
 o

v
e

r
A

a
lo Saath Aalo

(b) Exponent (E)

 0

 0.5

 1

 1.5

 2

2 4 8 12 16 20

S
p

e
e

d
u

p
 o

v
e

r
A

a
lo Saath Aalo

(c) Synchronization (δ in msec)

 0

 0.5

 1

 1.5

 2

0.25 0.5 1 2 4 5

S
p

e
e

d
u

p
 o

v
e

r
A

a
lo Saath Aalo

(d) Arrival time scaling (A)

 0

 0.5

 1

 1.5

 2

1x 2x 4x 8x 16x

S
p

e
e

d
u

p
 o

v
e

r
A

a
lo

(e) Deadline (d)

Figure 14: SAATH sensitivity analysis.

vary δ and measure its impact on the CCT. Fig. 14(c) shows as
δ increases, the speedup in Aalo and SAATH both diminish. As
shown in §7.3, SAATH comfortably finishes calculating each new
schedule within 8 msec even during busy periods (with an average
of 0.57 msec and P90 of 2.85 msec). Thus when δ increases, the
CCT increases because the ports may finish the current scheduled
flows and become idle before receiving a new schedule from the
coordinator. This shows that in general shorter scheduling intervals
help to keep all the ports busy which in turn requires the global
coordinator to be able to calculate schedules quickly.

CoFlow arrival time (contention): In this experiment, we vary
the arrival time (A) between the CoFlows to vary the CoFlow con-
tention. The x-axis in Fig. 14(d) shows the factor by which the arrival
times are sped up. For example, A = 0.5 denotes that CoFlows arrive
0.5× faster (2× slower), whereas A = 4 denotes that CoFlows arrive
4× faster. The y-axis shows the speedup compared to the default
Aalo, i.e., Aalo with A = 1. Fig. 14(d) shows that as A increases, the
overall speedup in both SAATH and Aalo decreases. This is expected
because increasing A causes more contention and the CoFlows are
queued up longer increasing their CCT under both schemes.

More importantly, when we increase A, the speedup of SAATH

over Aalo increases, from 1.53× to 1.9×, showing the higher the
contention, the more SAATH outperforms Aalo, using the LCoF
policy.

CoFlow deadline (d): Recall that LCoF by default does not pro-
vide the starvation-free guarantees, and can starve the CoFlows with
high contention. To avoid starvation, SAATH assigns each CoFlow a
deadline of d ·Cq · t (D5 in §4.2), whereCq · t denotes the estimated
deadline based on current CoFlows if scheduled under FIFO. In this
experiment, we measure the impact of d on the CCT speedup, where
d is varied from 1 to 16. Fig. 14(e) shows that SAATH is insensitive
to d, and comfortably schedules the CoFlows within the deadline.
Even when the deadlines are as per FIFO (d = 1), SAATH can achieve
a median speedup of 1.5× over Aalo. A small drop in the speedup

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1x 1x 10x

C
D

F

Speedup over Aalo

Figure 15: [Testbed] Speedup in CCT in SAATH.

at d = 1 is because starvation-free scheduling occasionally kicks in,
and the CoFlows that passed the deadline are forced to be scheduled,
which would not have been under LCoF only, resulting in worse
CCT. At higher values of d (> 2), SAATH has more freedom to
re-order the CoFlows to facilitate their CCT without violating the
deadlines.

7 Testbed Evaluation
Testbed setup: Similar to simulations, our testbed evaluation keeps
the same job arrival times, flow lengths and flow ports in trace replay.
All the experiments use the default parameter values of K ,E, S,δ . For
the testbed experiments, we rerun the trace on Spark-like framework
on a 150-node cluster in Microsoft Azure [5]. We use the FB trace
as it has a cluster size similar to that of our testbed. The coordinator
runs on a Standard F4s VM (4 cores and 8GB memory) based on the
2.4 GHz Intel XeonÂő E5-2673 v3 (Haswell) processor. Each local
agent runs on a D2v2 VM (2 cores and 7GB memory) based on the
same processor and with 1 Gbps network connection.

In testbed evaluation, we compare SAATH against Aalo. The pri-
mary evaluation metric is the speedup in CCT. We also compare the
speedup in job completion time and SAATH scheduling overheads.

7.1 Improvement in CCT
In this experiment, we measure the speedup in SAATH compared
to Aalo. Fig.15 shows that the ratio of CCT under SAATH over that
under Aalo ranges between 0.09-12.15×, with an average of 1.88×
and a median of 1.43× compared to under Aalo, which is close to the
reduction observed in the simulation experiments. Although SAATH

improves the CCT for the majority of CoFlows (>70%), it slows
down some of the CoFlows. These CoFlows are favored by FIFO
as they arrived early. The same CoFlows would be pushed back by
SAATH if they observe high contention. Additionally, the starvation
avoidance rarely kicked in (< 1%) even for d = 2. This experiment
shows that SAATH is effective in improving CCT in real settings.

7.2 Job Completion Time
Next, we evaluate how the improvements in CCT affects the job
completion time. In data clusters, different jobs spend different frac-
tions of their total job time in data shuffle. In this experiment, the
fraction of time that the jobs spent in the shuffle phase follows the
same distribution used in Aalo [14]. Fig. 16 shows that SAATH sub-
stantially speeds up the job completion time of the shuffle-heavy
jobs (shuffle fraction ≥50%) by 1.83× on average (P50 = 1.24×
and P90 = 2.81×). Additionally, across all jobs, SAATH reduces the
job completion time by 1.42× on average (P50 = 1.07× and P90 =
1.98×). This shows that the benefits in improving CCT translates

448

Saath CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

 0

 1

 2

 3

 4

 5

<25% 25-50% 50-75% >=75% All

S
p
e
e
d
u
p
 o

v
e
r

A
a
lo P50

P90

Figure 16: [Testbed] Speedup in job completion time using
SAATH over Aalo. X-axis shows the fraction of total job time
spent in shuffle phase.

Table 2: [Testbed] Resource usage in SAATH and Aalo.
SAATH Aalo

Average P90 Average P90

Global CPU (%) 37.8 42.7 33.5 35.5
co- Memory (MB) 229 284 267 374

ordinator Total time 0.57 2.85 0.1 0.2
(LCoF / (0.02 / 0.24) (0.03 / 0.7)

All-or-none)
(msec)

Local CPU (%) 5.6 5.7 5.5 5.7
node Memory (MB) 1.68 1.7 1.75 1.78

into better job completion time. As expected, the improvement in
job completion time is smaller than the improvements in CCT be-
cause job completion time depends on time spent in both compute
and communication (shuffle) stages, and SAATH improves only the
communication stage.

7.3 Scheduling Overhead
We next evaluate the overheads in SAATH at the coordinator and
the local agents. Table 2 shows the overheads in terms of CPU
and memory utilization for both SAATH and Aalo. We measure the
overheads in two cases: (1) Average: the average utilization during
the entire execution of the trace, (2) Busy: the 90-th percentile
utilization indicating the performance during busy periods when a
large number of CoFlows arrive. As shown in Table 2, SAATH has a
very small overhead at the local nodes, where the CPU and memory
utilization is minimal even during busy times. The global coordinator
also uses the server resources economically – compared to Aalo,
overall SAATH incurs 4.3% increase in average CPU utilization.
Finally, the scheduling latency is overall small, although higher than
Aalo due to all-or-none, LCoF and per-flow scheduling. The time
it takes the coordinator to calculate new schedules is 0.57 msec on
average and 2.85 msec at P90.

We also break down the computation time at the coordinator in
SAATH into the time spent in ordering CoFlows (using per-flow
thresholds and LCoF), scheduling using all-or-none, and the rest
which is for assigning rates for work conservation. Table 2 shows
that most of the computation time is spent on assigning rates for
work conservation; ordering the CoFlows using LCoF accounts for
less than half of the schedule compute time.

In summary, our overhead evaluation shows that the cost of the
SAATH scheduling algorithm is moderate, and that the CCT improve-
ment in SAATH outweighs its costs.

8 Related Work
Non-Clairvoyant Scheduling: Non-clairvoyant scheduling, i.e., sched-
uling without prior knowledge, has been studied as early as in time-
sharing systems [17, 18], with many variations [28, 31] and applied
to diverse scheduling problems such as memory controller schedul-
ing [24].

CoFlow scheduling: Varys [16] was proposed to schedule the
CoFlows assuming prior information is available. In contrast, LCoF
is an online scheduling policy, that in fact performs comparable to
offline SEBF from Varys (Fig. 9). [30] shows CoFlow scheduling is
NP hard and proposes heuristics to reduce the average CCT, again
assuming prior knowledge of CoFlows. Baraat [19] and Aalo [14]
schedule CoFlows in online settings. We have already discussed
Aalo extensively. Baraat is a completely de-centralized scheduler
without coordination among the ports, and suffers from the same
limitation as Aalo. In contrast, SAATH is, to our best knowledge,
the first CoFlow scheduler that takes into consideration the spatial
dimension when scheduling CoFlows, by applying all-or-none and
LCoF. Recently, CODA [35] was proposed to automatically identify
flows that belong to the same CoFlows, and schedule them while
tolerating identification errors.

Flow scheduling: There has been a rich body of prior work on
flow scheduling. Efforts to minimize FCTs, both with prior infor-
mation (e.g., PDQ [22], pFabric [8]) and without prior information
(e.g., Fastpass [29], PIAS [11]), fall short in minimizing CCTs which
depend on the completion of the last flow [16]. Similarly, Hedera [7]
and MicroTE [12] schedule the flows with the goal of reducing the
overall FCT, which again is different from reducing the overall CCT
of CoFlows.

All-or-none: The all-or-none principle in SAATH is also used
in different contexts (e.g., caching in Pacman [9], task placement
in [21]). Squall [33] uses it to partition data for scalable and fast
query processing. Fastpass [29] uses it to schedule flows in datacen-
ters.

Scheduling in parallel processors: CoFlow scheduling by ex-
ploiting the spatial dimension bears similarity to scheduling pro-
cesses on parallel processors and multi-cores, where many variations
of FIFO [32], FIFO with back-filling [26] and gang scheduling [20]
are proposed.

9 Conclusion
In this paper, we show that the prior-art CoFlow scheduler Aalo
suffers from the out-of-sync problem and by using a simple FIFO
scheduling policy which ignores CoFlow contention across ports. We
present SAATH that addresses the limitations in Aalo by exploiting
the spatial dimension in scheduling CoFlows. SAATH uses all-or-
none to schedule all flows of a CoFlow together, and the Least-
Contention-First policy to decide on the order of CoFlows from the
same priority queue. Our evaluation using a 150-node testbed in
Microsoft Azure and large scale simulations using traces from two
production clusters shows that compared to Aalo, SAATH reduces
the CCT by 1.53× and 1.42× in median, and 4.50× and 37× at the
90-th percentile for two traces.

449

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Akshay Jajoo et al.

Sender
Ports

P1

P2

C1 C2

C1 C3

C1

C1

(a) Setup

(b) SCF
5t

5t

6t

7t

C2

5t 11t 12t

12t

P1

C1

C1

(c) Optimal

C2

C3

6t

P2

P1

P2

C3

7t

Figure 17: SJF is sub-optimal. (a) shows the setup and CoFlow
durations, whereas (b) and (c) show the CoFlow progress. The
average CCT in (b) is 5+11+12

3 = 9.3, and in (c) is 12+6+7
3 = 8.3.

Appendix A: SJF for CoFlows is Sub-optimal
Fig. 17 illustrates that SJF is not optimal even when all the CoFlows
arrive at the same time, and their durations are known apriori. When
an i-th CoFlow is scheduled, the increase in the waiting time of other
CoFlows is ti · ki , where ti is the duration CoFlow i is scheduled,
and ki is the contention, i.e., the number of other CoFlows blocked.
In CoFlows, ki is non-uniform as different ports have different
CoFlows and differen CoFlows reside at different numbers of ports.
However, SJF only considers ti , and is agnostic to ki , and thus
results in higher waiting time as shown in Fig. 17. In this example,
k1 = 2,k2 = k3 = 1, and t1, t2, t3 are shown in the figure. SJF
schedules CoFlow C1 first as it is the shortest. However, C1 blocks
the other two CoFlows, increasing the total waiting time by 2 · 5t ,
which leads to sub-optimal average CCT.

References
[1] [n. d.]. Apache Hadoop. ([n. d.]). http://hadoop.apache.org.
[2] [n. d.]. Apache Hive. ([n. d.]). http://hive.apache.org.
[3] [n. d.]. Apache Spark. ([n. d.]). http://spark.apache.org.
[4] [n. d.]. CoFlow trace from Facebook datacenter. ([n. d.]). https://github.com/

coflow/coflow-benchmark.
[5] [n. d.]. Microsoft Azure. ([n. d.]). http://azure.microsoft.com.
[6] [n. d.]. Open-sourced Aalo Simulator. ([n. d.]). https://github.com/coflow/

coflowsim.
[7] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, and Amin Vahdat. 2010. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In NSDI.

[8] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKe-
own, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal Near-optimal
Datacenter Transport. In ACM SIGCOMM.

[9] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang, Dhruba Borthakur,
Srikanth Kandula, Scott Shenker, and Ion Stoica. 2012. PACMan: Coordinated
Memory Caching for Parallel Jobs. In NSDI’12.

[10] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi
Lu, Bikas Saha, and Edward Harris. 2010. Reining in the Outliers in Map-reduce
Clusters Using Mantri. In OSDI.

[11] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Weicheng Sun. 2014.
PIAS: Practical Information-Agnostic Flow Scheduling for Data Center Networks.
In ACM HotNets.

[12] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-
croTE: Fine Grained Traffic Engineering for Data Centers. In CoNEXT.

[13] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: A Networking Abstraction
for Cluster Applications. In HotNets-XI.

[14] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient Coflow Scheduling Without
Prior Knowledge. In ACM SIGCOMM.

[15] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion Stoica.
2011. Managing Data Transfers in Computer Clusters with Orchestra. In ACM
SIGCOMM.

[16] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient Coflow
Scheduling with Varys. In ACM SIGCOMM.

[17] Edward G. Coffman and Leonard Kleinrock. 1968. Feedback Queueing Models
for Time-Shared Systems. J. ACM 15, 4 (Oct. 1968), 549–576. https://doi.org/10.
1145/321479.321483

[18] Fernando J. Corbató, Marjorie Merwin-Daggett, and Robert C. Daley. 1962. An
Experimental Time-sharing System. In Proceedings of the May 1-3, 1962, Spring
Joint Computer Conference (AIEE-IRE ’62 (Spring)). ACM, New York, NY, USA,
335–344. https://doi.org/10.1145/1460833.1460871

[19] Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron.
2014. Decentralized Task-aware Scheduling for Data Center Networks. In ACM
SIGCOMM.

[20] Dror G. Feitelson and Morris A. Jettee. 2005. Improved Utilization and Respon-
siveness with Gang Scheduling. In Job Scheduling Strategies for Parallel Process-
ing.

[21] S. Gupta, V. Chandramouli, and S. Chakrabarti. 2013. Web-scale entity annotation
using MapReduce. In High Performance Computing.

[22] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Finishing Flows
Quickly with Preemptive Scheduling. ACM SIGCOMM (2012).

[23] Akshay Jajoo, Rohan Gandhi, and Y. Charlie Hu. 2016. Graviton: Twisting Space
and Time to Speed-up CoFlows. In USENIX HotCloud.

[24] Yoongu Kim, Dongsu Han, O. Mutlu, and M. Harchol-Balter. 2010. ATLAS:
A scalable and high-performance scheduling algorithm for multiple memory
controllers. In High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on.

[25] Gautam Kumar, Ganesh Ananthanarayanan, Sylvia Ratnasamy, and Ion Stoica.
2016. Hold ’Em or Fold ’Em?: Aggregation Queries Under Performance Varia-
tions. In EuroSys.

[26] David A. Lifka. 1998. The ANL/IBM SP Scheduling System. In IPPS.
[27] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh Govindan. 2013.

Scalable rule management for data centers. In NSDI.
[28] Misja Nuyens and Adam Wierman. 2008. The Foreground-Background Queue: A

Survey. Perform. Eval. 65, 3-4 (March 2008), 286–307. https://doi.org/10.1016/j.
peva.2007.06.028

[29] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A Centralized "Zero-queue" Datacenter Network. In ACM
SIGCOMM.

[30] Zhen Qiu, Cliff Stein, and Yuan Zhong. 2015. Minimizing the total weighted
completion time of coflows in datacenter networks. In SPAA.

[31] Idris A. Rai, Guillaume Urvoy-Keller, and Ernst W. Biersack. 2003. Analysis of
LAS Scheduling for Job Size Distributions with High Variance. In Proceedings
of the 2003 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’03). ACM, New York, NY, USA,
218–228. https://doi.org/10.1145/781027.781055

[32] Uwe Schwiegelshohn and Ramin Yahyapour. 1998. Analysis of First-come-first-
serve Parallel Job Scheduling. In SODA.

[33] Aleksandar Vitorovic, Mohammed Elseidy, Khayyam Guliyev, et al. 2016. Squall:
Scalable Real-time Analytics. In EPFL Technical report, EPFL-REPORT-217286.

[34] Di Xie, Ning Ding, Y. Charlie Hu, and Ramana Kompella. 2012. The Only
Constant is Change: Incorporating Time-varying Network Reservations in Data
Centers. In ACM SIGCOMM.

[35] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf Chowdhury, and Yanhui
Geng. 2015. CODA: Toward Automatically Identifying and Scheduling Coflows
in the Dark. In ACM SIGCOMM.

450

http://hadoop.apache.org
http://hive.apache.org
http://spark.apache.org
https://github.com/coflow/coflow-benchmark
https://github.com/coflow/coflow-benchmark
http://azure.microsoft.com
https://github.com/coflow/coflowsim
https://github.com/coflow/coflowsim
https://doi.org/10.1145/321479.321483
https://doi.org/10.1145/321479.321483
https://doi.org/10.1145/1460833.1460871
https://doi.org/10.1016/j.peva.2007.06.028
https://doi.org/10.1016/j.peva.2007.06.028
https://doi.org/10.1145/781027.781055

	Abstract
	1 Introduction
	2 Background
	2.1 CoFlow Abstraction
	2.2 Aalo Scheduler
	2.3 Drawback 1: Out-of-Sync Problem
	2.4 Drawback 2: SJF is Sub-optimal for CoFlows

	3 Key Ideas
	4 Online Scheduler Design
	4.1 Saath Architecture
	4.2 Saath Scheduler
	4.3 Handling Cluster Dynamics
	4.4 LCoF Limitation

	5 Implementation
	6 Simulation
	6.1 CCT Improvements
	6.2 Impact of Design Components
	6.3 Sensitivity Analysis

	7 Testbed Evaluation
	7.1 Improvement in CCT
	7.2 Job Completion Time
	7.3 Scheduling Overhead

	8 Related Work
	9 Conclusion
	References

