
Graviton: Twisting Space and Time to Speed Up CoFlows

Akshay Jajoo Rohan Gandhi
Purdue University

Y. Charlie Hu

1 Introduction
Improving network performance [5, 11] is crucial in

improving the performance of applications running in
datacenters, especially data-intensive applications such
as MapReduce. It is shown that traditional approaches
that improve flow completion time (FCT) [10] may not
improve application performance [4], because they often
fail to capture the application requirements. The CoFlow
abstraction [4] was proposed to enable applications to
specify their network demands. It is shown that improv-
ing the completion time of CoFlows leads to better ap-
plication performance [4, 6].

Prior online CoFlow schedulers [4, 6, 8, 5, 12] have
focused on improving CoFlow Completion Time (CCT).
A rule of thumb to improve the overall CCT is to sched-
ule Short CoFlows First (SCF) [6], i.e., shorter CoFlow
is scheduled before longer CoFlow. However, SCF re-
quires apriori knowledge about the CoFlow sizes. To
make the scheduler practical, Aalo [5] approximates SCF
without apriori knowledge of CoFlow sizes, using prior-
ity queues and weighted fair sharing across the queues.
When a CoFlow first arrives, it starts in the highest pri-
ority queue, and moves to the lower priority queue as
it sends more data yet does not finish (hinting that it
is likely a long CoFlow). Effectively, short CoFlows
get prioritized over longer CoFlows, improving the over-
all CCT. Additionally, Aalo uses FIFO to schedule the
CoFlows from the same queue to avoid starvation.

In essence, in scheduling CoFlows in datacenter, Aalo
did a straightforward parody of the classic Shortest-
Job-First (SJF) policy [13], by simply representing the
progress of the CoFlow as the total bytes sent at all ports,
i.e., a normalized notion of progress in the time dimen-
sion. In doing so, it throws away a potentially very use-
ful, spatial dimension of the problem domain, i.e., differ-
ent CoFlows can have flows running on many ports (wide
CoFlows) or only a few ports (thin CoFlows).

Aalo’s scheduler has two implications to its behavior
by being oblivious to CoFlow width. (1) Wide CoFlows

move up the queues fast, but always wait for equal-sized
thin CoFlows to catch up. This is because the queue
thresholds for determining when to move CoFlows to
lower priority queues are based on the total bytes sent.
(2) At each queue, using FIFO misses the opportunity
that scheduling CoFlows likely to finish in this queue first
reduces CCT for this CoFlow and the overall CCT.

In this paper, we make a key observation that using
multiple priority queues and weighted fair sharing at
each port, Aalo does a good job in approximating SJF,
but it does so only at the queue-granularity, as using
FIFO to schedule CoFlows in each queue is rather sim-
plistic, and has no reminiscence of SJF.

Instead, we discuss three insights into Aalo’s sched-
uler where exploiting the spatial dimension of the prob-
lem domain, i.e., the width (number of ports) of the
CoFlows, can lead to better scheduling policies within
each priority queue, improving the overall CCT.

In particular, we show different queues should use dif-
ferent scheduling policies based on the CoFlow width.
First, we use Thin-CoFlow-First in high priority queues
to help small CoFlows complete quickly, reducing their
CCT without affecting the CCT of larger CoFlows. Sec-
ond, we use Wide-CoFlow-First in the medium-sized pri-
ority queues to avoid the long (and thin) CoFlows block-
ing wide (but short) CoFlows. Third, we again use FIFO
in the lowest priority queues to lessen the degree of star-
vation of early arrival CoFlows.

Secondly, we expose a unique problem in Aalo that
flows in individual CoFlows finish out-of-sync at dif-
ferent ports, again due to lack of coordination among
the ports, and Aalo’s choice of total bytes to move the
CoFlows to lower queues. We observe that CoFlows can
get demoted to lower priority queues even if some of its
ports have sent almost no data (observation-4 in §3)! This
translates into worsened overall CCT. A thorough treat-
ment to this important problem is quite involved, which
we leave for future work.

We have designed and prototyped GRAVITON that in-

1

P1

P2

P3

R1

R2

R3

Ingress

Ports

Egress

Ports

Datacenter

Network

CoFlows

C1

C2

C2

C3

Figure 1: CoFlow example. The arrival time for CoFlows
C2 < C1 < C3.
herits the basic architecture of Aalo for approximating
SJF at the queue-granularity, but replaces the per-queue
FIFO scheduling policy with the above list of refined
policies for different priority queues. Our design further
handles practical issues including CoFlow starvation.

Our preliminary evaluation using real traces from
Facebook MapReduce jobs [1] shows GRAVITON
achieves 1.25x (P50) and 8x (P90) speed-up over Aalo.

2 Background
In this section, we briefly detail on the CoFlow ab-

straction and summarize prior art in CoFlow scheduling.

2.1 CoFlow
The CoFlow abstraction [4] enables datacenter appli-

cations (e.g., MapReduce, web-servers) to easily specify
their network demands such as faster CoFlow completion
time, or meeting latency deadlines [4].

In datacenters, many applications and many instances
of the same application (e.g., jobs in MapReduce) run
concurrently. As a result, many CoFlows exist simulta-
neously that compete for the network resource (depicted
in Figure 1). The goal of CoFlow scheduling algorithms
is to schedule the CoFlows so as to improve the applica-
tion performance. Particularly in data-intensive applica-
tions (e.g., MapReduce) [7, 14], completing a CoFlow
consisting of many parallel flows between distributed
endpoints is more important than finishing individual
flows to improve job completion time [8, 6, 5].

2.2 Online CoFlow Scheduling
The basic idea behind prior CoFlow scheduling algo-

rithms which all aim to minimize the average completion
time of the CoFlows, is a variation of the classic Shortest
Job First algorithm, called Shortest CoFlow First (SCF).
They differ in how they implement the online approxima-
tion of the SCF, without prior knowledge about CoFlows.

De-centralized scheduler. Baraat [8] uses a pure
de-centralized scheduler, where individual end-points
(called ports) schedule CoFlows independently. Individ-
ual ports schedule the shorter CoFlows first, based on
the CoFlow size observed locally. Such de-centralized
scheduling policy is sub-optimal as different flows of a
CoFlow may compete with different other CoFlows on
different ports, easily causing them to end up with differ-
ent local priorities and progress out of sync and finish at

q0 q1 q2

C3 over
C2 over

C1 over

Time

Port2

Port1

Queue
Priority

High Low

q3

(a) CoFlow scheduler timeline in Aalo (FIFO).

q0
(TCF)

q1
(TCF)

q2
(WCF)

C3 over
C2 over

C1 over

Time

Port2

Port1

q3
(FIFO)

Queue
(scheduler)

(b) CoFlow scheduler timeline in GRAVITON.
Figure 2: CoFlow scheduling for CoFlows in Figure 1.
Solid vertical lines denote when both CoFlows cross
queue thresholds.

different times.

Hybrid scheduler. Aalo [5] addresses the limitation of
Baraat using a hybrid of centralized and decentralized
scheduler. To improve the odds different flows of the
same CoFlow at different ports make similar progress,
it uses a centralized controller to summarize the total
progress, i.e., the total number of bytes sent by the
CoFlow on all its ports. Locally at each port, a lo-
cal scheduler approximates SCF by using multiple prior-
ity queues, moving flows across different queues based
on the total progress (bytes) of its CoFlow, and using
weighted fair queuing across queues. Within each prior-
ity queue, the local scheduler uses FIFO when deciding
the order of the flows to send to avoid starvation.

2.3 The Essence
In essence, in scheduling CoFlows in datacenter net-

works, Aalo did a straightforward parody of the classic
SJF [13, 9], by simply representing the progress of the
CoFlow as the total bytes sent at all ports by the CoFlow.

In doing so, it throws away a potentially very useful,
spatial dimension of the problem, i.e., different CoFlows
have flows running on different numbers of ports.

Figure 2 illustrates the outcome and the essence of
Aalo’s scheduling algorithm. Effectively the algorithm
only joggles the time dimension, just like a generic on-
line SJF algorithm in a single machine. Upon arrival,
flows of a CoFlow start from the first queue, which has
the highest priority, and gradually move to lower priority
queues as its CoFlow’s total bytes crosses queue thresh-
olds. This design choice has two implications.

Implication 1: Wide CoFlows move up the queue
stack fast, but always wait for equal-sized thin flows
to catch up. This is because the queue thresholds are
based on the total bytes sent and individual queue thresh-
olds are same for all the CoFlows. When a wide CoFlow

2

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q
u

eu
e

In
d

ex

Case 1

Case 2

Case 3
10 TB

 C
o

Fl
o

w
 S

iz
e

 CoFlow Width

Figure 3: Width (#sender ports) and total size of all the
CoFlows from Facebook trace [1]. The CoFlows follow
heavy tailed distribution where 66% of the CoFlows have
width <10 ports, whereas 8.3% CoFlows are >100 ports
in width. Y2-axis shows the queue thresholds.

is scheduled it quickly reaches the threshold as it can
send data on multiple ports than a thin CoFlow. However,
once it reaches the threshold, it moves to the lower pri-
ority queue, where it needs to wait till all other CoFlows
from the prior high priority queues are scheduled.

Implication 2: At a given queue, scheduling
CoFlows that are likely to finish while in this queue
first reduces CCT. This follows from implication-1.
Scheduling CoFlow that does not finish in that queue
first does not improve CCT of that CoFlow, as it any-
way needs to wait in the next queue for all other CoFlows
from the same queue to be scheduled (implication-1). In-
stead it delays and worsens CCT of a CoFlow that would
finish in that queue. This is illustrated in Figure 2(a). In
queue q1, Port2 schedules CoFlow C2 first as per FIFO.
As C2 sends more data it reaches queue threshold and
moves to queue q21. However, C2 needs to wait for C3
to be scheduled as C2 now has lesser priority than C3.
Instead, if C3 is scheduled prior to C2, the waiting time
for C3 is reduced without any change to the waiting time
of C2, thus improving overall CCT.

Naturally, no online scheduler can know which
CoFlows finish in individual queues as CoFlow sizes are
not known apriori. However, spatial dimension (number
of ports) provides useful hints about the CoFlow sizes.

3 Key Insights
In this section, we discuss three aspects of Aalo’s

scheduling algorithm where exploiting the spatial dimen-
sion of CoFlows leads to opportunities for significant im-
provement of the overall CoFlow completion time.

Figure 3 plots the width versus size of all the CoFlows
in a MapReduce trace from Facebook datacenter [1]. The
trace contains O(1000) CoFlows across O(100) ports.

We divide the CoFlows into three regions: small-sized,
medium-sized, and large-sized, as shown in figure.

Observation 1 (Case 1). Our first observation is that
1C2, C3 have similar behavior in q0.

most small CoFlows are also narrow, i.e., they have only
a few flows each. Of the CoFlows with size <1GB, 79%
CoFlows have width <10 ports. This suggests for using
a Thin-CoFlow-First (TCF) policy to schedule CoFlows
in each queue, as many thin CoFlows are likely to finish
without going to higher-up queues (Implication 2).

Figure 7 which plots the speed-up in color for individ-
ual CoFlows based on their width and size, shows that
switching from FIFO to TCF for queues in this region
achieves median speed-up of 25% over Aalo, when eval-
uated using the Facebook trace (more details in § 5).

Observation 2 (Case 2). However, scheduling using
TCF in all queues has its limitations. In medium-sized
queues, the queue thresholds are fairly large. As the
queue thresholds are constant for wide and thin CoFlows,
wide CoFlows quickly reach the queue threshold than
thin CoFlows (Implication 1). But as the thin flows that
have reached these medium-sized queue have similar to-
tal bytes (on smaller ports), they must have longer indi-
vidual flows compared to those of wide CoFlows.

Assume both wide and thin CoFlows have equal prob-
ability of completion while in any of the medium-sized
queues. In those queues, scheduling long flows of thin
CoFlows contradicts the SJF spirit and worsens the CCT
of short (and wide) CoFlows. However, if the wide
CoFlows are scheduled first, the overall CCT can be im-
proved. We call this policy Wide-CoFlow-First (WCF).

Observation 3 (Case 3). In large-sized (lowest priority)
queues, most CoFlows are wide and have no significant
distinction in terms of width, using FIFO respects their
arrival time, and lessens the degree of starvation.

In summary, the above observations suggest that dif-
ferent queues should use different scheduling policies
to improve the overall CCT. First, we use TCF in
high priority queues to help small CoFlows complete
quickly, reducing their CCT without affecting the CCT
of larger flows (Case 1). Second, we use WCF in the
medium-sized priority queues to avoid the long (and
thin) CoFlows blocking wide (but short) CoFlows (Case
2). Third, we again use FIFO in the lowest priority
queues to lessen the degree of starvation of early arrival
CoFlows (Case 3). This is illustrated in Figure 2(b).

Observation 4 (out-of-sync CoFlow completion). As
ports schedule the CoFlows independently, individual
ports are not aware about how the same CoFlow is sched-
uled on other port, which could result in CoFlows be-
ing scheduled out-of-sync. The individual ports sched-
ule CoFlows in the same priority queue until the total
number of bytes calculated across all ports crosses the
queue threshold. Without coordination, one port can eas-
ily send enough data to cross the threshold, and demote
the CoFlow to the next queue while other ports have sent
little to no data! (illustrated in Figure 4). This clearly

3

P1

P2

P3

R1

R2

R3

Ingress

Ports

Egress

Ports

Datacenter

Network

CoFlows

C2

C2

C3

C1

C1

(a) CoFlow Description.

q0 q1 q2

C3 over
C1 over

Time

Port2

Port1

q3 Queue

Port3 C2 over

Queue thresholds

(b) Out-of-sync scheduling in Aalo (c) CDF over ratio of Max. and Min. FCT
Figure 4: Out of sync scheduling in Aalo. CoFlow Arrival time is C3 < C2 < C1. (b) shows CoFlow C1 crosses
queue threshold for q0 even if Port1 has sent very less data, as Port3 has sent enough data to cross threshold. Similar
for C2. (c) shows CDF of ratio of Max. and Min. Flow Completion Time (FCT) for individual CoFlows.

DC

Fabric

Q0

Global

Coordinator

QN-1

Q0

QN-1

.

.

.

.

.

.

.

.

.

Daemon at

Egress Port

Priority

Local daemon

Figure 5: GRAVITON scheduler architecture.

inflates the max. flow completion time (FCT), which
governs the CCT. Figure 4(c) shows that the problem
is severe in practice – the max/min FCT of individual
CoFlows varies between 1-233x (median 1.33x). The
root cause of the problem is again lack of coordination in
the spatial dimension, i.e., across ports. A thorough treat-
ment to this important problem is quite involved, which
we leave for future work.

4 Design
In this section, we discuss details of GRAVITON archi-

tecture and scheduler as well as key policies to handle
challenges including CoFlow starvation.

GRAVITON Architecture: Figure 5 shows the GRAVI-
TON architecture. GRAVITON consists of a global co-
ordinator and local daemons running on all individual
ports. Similar to Aalo, individual ports schedule the
CoFlows using multiple priority queues and weighted
sharing across priority queues.

The global coordinator periodically collects the num-
ber of bytes sent by individual CoFlows from all the
ports, and computes and pushes the total bytes sent per
CoFlow to all the sender ports. The global coordinator
also collects and pushes the width of the CoFlows.

Scheduling policy: Local daemons on individual
ports schedule the CoFlows based on the total bytes and
width sent by the coordinator. When the CoFlow ar-
rives it is assigned to the highest priority queue, and as it
sends more data it is progressively assigned to the lower

Table 1: Mapping between queue and scheduling policy.
Q0 denotes the highest priority queue.

Queue Policy
Q0 to Qn−4 TCF

Qn−3 to Qn−2 WCF
Qn−1 FIFO

priority queues. Note that all the ports have the same
queue threshold, and assign the same CoFlow to the same
queue. Similar to Aalo, we use priority queues with ex-
ponentially increasing thresholds in the power of 10, i.e.,
Qthreshold

i+1 = 10 · Qthreshold
i to balance between the num-

ber of queues and overall CCT [5]. Currently, the highest
(lowest) priority queue has a threshold of 10MB (10TB).
We also keep same weights to the priority queues as
Aalo.

As mentioned in previous section, we exploit the
opportunities to improve the CCT by using different
scheduling policies (TCF, WCF and FIFO) in different
queues (§3). Table 1 summarize the mapping between
the queues and scheduling policy. In current design,
the mapping between the queue and scheduling policy
is fixed and derived using the Facebook trace. We leave
generating this mapping at run-time as future work.

Computing width: Recall that TCF and WCF sched-
ule the CoFlows in the same queue using their width in-
formation. We tried different ways to compute the width.
For a CoFlow with m sender ports and r receiver ports,
the width can be computed in many ways including (m),
(r), (m+ r), (m · r), max(m,r). In our evaluation, we did
not find substantial difference in overall CCT using these
combinations. We used r and update it as flows complete.

Avoiding starvation: TCF and WCF potentially
starve certain CoFlows. TCF starves wider CoFlows
if thin CoFlows constantly arrive. Similarly WCF can
starve thin CoFlows. We avoid starvation by limiting the
waiting time. The individual ports keep track of the wait-
ing time for individual CoFlows based on their arrival
time, and immediately schedules the CoFlows whose
waiting time exceeds the threshold. We call this design as
GRAVITON-SF. As the waiting time for individual flows

4

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1 1 10

C
D

F

Speed-up

Figure 6: Speed-up distribution for all CoFlows.

Case 1

Case 2

 C
o

Fl
o

w
 S

iz
e

 CoFlow Width

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q
u

eu
e

In
d

ex

Figure 7: Speed-up in GRAVITON over Aalo for
CoFlows of different width and total size.
of a CoFlows are same on all the ports, the flows are
scheduled in sync on all their ports even when all the
ports are heavily loaded.

Work conservation: Work conservation helps assign
unused bandwidth especially when the receivers experi-
ence contention [5]. In GRAVITON, the receiver notifies
the global coordinator of the contention, and the coordi-
nator explicitly shuts of entire CoFlow instead of shut-
ting off some of the flows as in Aalo. This is because of
the all-or-none property of CoFlows [3, 16]. GRAVITON
notifies the sender ports and delays scheduling a CoFlow
if the receivers are not ready. This design choice is syn-
ergistic to the delay-scheduling principle [15]. However,
this design choice could potentially lead to starvation if
all its receiver ports are not ready at any point. We ad-
dress the starvation problem by using the GRAVITON-SF,
which we believe can be improved in future.

5 Evaluation
We implemented GRAVITON scheduler, and in this

section we evaluate the speed-up using GRAVITON over
Aalo when we simulate GRAVITON and open-sourced
implementation of Aalo [2] using MapReduce trace from
Facebook. The trace contains O(1000) CoFlows details
for 1 hour across across O(100) ports. The queue thresh-
olds and weights are same for Aalo and GRAVITON.

Figure 6 shows the CDF of speed-up obtained using
GRAVITON over Aalo for all the CoFlows. The speed-
up was measured as CCT in Aalo

CCT in Graviton , and values >1 mean
GRAVITON is faster. Figure 6 shows that GRAVITON im-
proves the CCT between 0.16x (equivalent to -6x) to 12x
(median=1.25x, average=1.65x). Furthermore, GRAVI-
TON improves the CCT of over 80.2% CoFlows at an
expense of worsened CCT of 19.8% CoFlows.

Figure 8: Queue-wise distribution of speed-ups.

To further understand the benefits of GRAVITON, we
zoom in the improvement in CCT for CoFlows of differ-
ent widths and sizes (shown in Figure 7). Unsurprisingly,
GRAVITON is highly effective in improving CCT of the
thin (and small) CoFlows. It can be seen that the signifi-
cant number of thin- CoFlows under 10GB size observed
substantial improvements due to TCF. In fact 81% of
the CoFlows with width <10 and size <10GB observed
speed-up >1 (Case 1)! However, surprisingly, GRAVI-
TON did not improve CCT for a small number of the thin-
CoFlows (red- points for CoFlows with width <10). This
is because FIFO favored these CoFlows based on their
arrival time, whereas TCF pushed them back for other
thin CoFlows. Similar to TCF, as expected WCF im-
proved the CCT for the wide CoFlows in the lower prior-
ity queues (Case 2). FIFO (in the last queue) had a small
improvement. This shows the effectiveness of different
scheduling policies in different queues.

Figure 8 shows the number of CoFlows affected in in-
dividual queues. It shows that CCT was improved for
86.4% of the CoFlows in the first queue, and GRAVITON
improves CoFlows across queues, except queue-4. We
found this problem linked to the out-out-sync problem
(§3) as the max/min FCT ratio for CoFlows in this queue
was very high – 1.44x (P50), 94x (P90).

6 Conclusion

In this paper, we presented GRAVITON, a CoFlow
scheduler to improve CoFlow Completion Time (CCT).
We make two contributions: (1) we show that the prior
art scheduler Aalo does not consider the spatial di-
mension, i.e., the width of CoFlows when scheduling
CoFlows, and misses out on opportunities to schedule the
shortest CoFlows from same priority queues. In GRAVI-
TON, we show how to use width of CoFlows differently
in different queues as hints to the CoFlow sizes to facil-
itate scheduling of short CoFlows. Using a trace from
Facebook datacenter, we show that GRAVITON speed-up
CoFlows by 1.25x (P50) and 8x (P90) over Aalo. (2) We
expose a unique problem in Aalo that flows in individ-
ual CoFlows finish out-of-sync because of the rootcauses
embedded in Aalo’s design of using FIFO and ignoring
spatial dimension, which we leave for future work.

5

References
[1] Coflow trace from facebook datacen-

ter. https://github.com/coflow/
coflow-benchmark.

[2] Open-sourced aalo simulator. https:
//github.com/coflow/coflowsim.

[3] G. Ananthanarayanan et al. Reining in the outliers
in map-reduce clusters using mantri. In OSDI 2010.

[4] M. Chowdhury and I. Stoica. Coflow: A network-
ing abstraction for cluster applications. In HotNets-
XI, 2012.

[5] M. Chowdhury and I. Stoica. Efficient coflow
scheduling without prior knowledge. In SIG-
COMM, 2015.

[6] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient
coflow scheduling with varys. In SIGCOMM, 2014.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. In OSDI 2004.

[8] F. R. Dogar, T. Karagiannis, H. Ballani, and
A. Rowstron. Decentralized task-aware scheduling
for data center networks. In SIGCOMM, 2014.

[9] S. Eilon and I. Chowdhury. Minimising waiting
time variance in the single machine problem. Man-
agement Science, 1977.

[10] C.-Y. Hong, M. Caesar, and P. Godfrey. Finishing
flows quickly with preemptive scheduling. In SIG-
COMM 2012.

[11] R. Mittal, R. Agarwal, S. Ratnasamy, and
S. Shenker. Universal packet scheduling. In Hot-
Nets 2015.

[12] Z. Qiu, C. Stein, and Y. Zhong. Minimizing the
total weighted completion time of coflows in data-
center networks. In SPAA 2015.

[13] A. Silberschatz, P. B. Galvin, G. Gagne, and A. Sil-
berschatz. Operating system concepts, volume 4.
Addison-Wesley Reading, 1998.

[14] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlings-
son, P. K. Gunda, and J. Currey. Dryadlinq: a
system for general-purpose distributed data-parallel
computing using a high-level language. In OSDI
2008.

[15] M. Zaharia et al. Delay scheduling: a simple tech-
nique for achieving locality and fairness in cluster
scheduling. In EuroSys 2010.

[16] M. Zaharia et al. Improving mapreduce perfor-
mance in heterogeneous environments. In OSDI
2008.

6

