Rubik: Unlocking the Power of Locality and End-Point Flexibility in Cloud
Scale Load Balancing

Rohan Gandhi, Y. Charlie Hu, Cheng-Kok Koh

Purdue University

Abstract

Cloud scale load balancers, such as Ananta and Duet
are critical components of the data center (DC) infras-
tructure, and are vital to the performance of the hosted
online services. In this paper, using traffic traces from
a production DC, we show that prior load balancer de-
signs incur substantial overhead in the DC network band-
width usage, due to the intrinsic nature of traffic redi-
rection. Moreover, in Duet, traffic redirection results in
extra bandwidth consumption in the core network and
breaks the full-bisection bandwidth guarantees offered
by the underlying networks such as Clos and FatTree.

We present RUBIK, a load balancer that significantly
lowers the DC network bandwidth usage while provid-
ing all the performance and availability benefits of Duet.
RUBIK achieves its goals by applying two principles in
the scale-out load balancer design — exploiting locality
and applying end-point flexibility in placing the servers.
We show how to jointly exploit these two principles to
maximally contain the traffic load balanced to be within
individual ToRs while satisfying service-specific failure
domain constraints. Our evaluation using a testbed pro-
totype and DC-scale simulation using real traffic traces
shows that compared to the prior art Duet, RUBIK can re-
duce the bandwidth usage by over 3x and the maximum
link utilization of the DC network by 4x, while providing
all the performance, scalability, and availability benefits.

1 Introduction

Load balancing is a foundational function of modern
data center (DC) infrastructures that host online services.
Typically, each service exposes one or more virtual IPs
(VIPs) outside the service boundary, but internally runs
on hundreds to thousands of servers, each with a unique
direct IP (DIP). The load balancer (LB) stores the VIP-
to-DIP mapping, receives the traffic destined to each VIP,
and splits it across the DIPs assigned for that VIP. Thus,
the LB touches every packet coming from the Internet, as
well as a significant fraction of the intra-DC traffic. For

Honggiang (Harry) Liu, Ming Zhang
Microsoft Research

a 40K-server DC, LB is expected to handle 44 Tbps of
traffic at full network utilization [21].

Such enormous traffic volume significantly strains the
data plane of the LB. The performance and reliabil-
ity of the load balancer directly affects the performance
(throughput and latency) as well as availability of the on-
line services within the DC. Recently proposed scale-out
LB designs such as Ananta [21] and Duet [14] provide
low cost, high scalability and high availability by dis-
tributing the load balancing function among Multiplex-
ers (Muxes), either implemented in commodity servers
called software Muxes (SMuxes) or existing hardware
switches, called hardware Muxes (HMuxes).

However, such LB designs incur high bandwidth us-
age of the DC network because of the intrinsic nature of
traffic redirection. First, even if the traffic source and
the DIPs that handle the traffic are under the same ToR,
the traffic first has to be routed to the Muxes, which may
be faraway and elongate the path traveled by the traf-
fic. Second, in both Ananta and Duet, the Muxes select
DIPs for a VIP by hashing the five-tuple of IP headers,
and hence are oblivious to DIP locations. As a result,
even if the Mux and some DIPs are located nearby the
source, the traffic can be routed to faraway DIPs in the
DC, again traversing longer paths. Lastly, these designs
do not leverage the server location flexibility in placing
the DIPs closer to the sources to shorten the path.

The second problem with the Duet LB design is that
the traffic detouring through core links breaks the full-
bisection bandwidth guarantees originally provided by
full-provisioned networks such as Clos and FatTree.

Our evaluation of traffic paths in a production DC net-
work shows that such traffic detour significantly inflates
the bandwidth usage of the DC network. This high band-
width usage not only requires the DC operator to pro-
vision high network bandwidth which is costly, but also
makes the network prone to transient congestion which
affects latency-sensitive services.

In this paper, we propose RUBIK, a new LB that sig-

nificantly reduces the high bandwidth usage by LB. Like
Duet, RUBIK uses a hybrid LB design consisting of the
HMuxes and SMuxes, and aims to maximize the VIP
traffic handled by HMuxes to reduce the LB costs. While
doing that, RUBIK reduces the bandwidth usage using
two synergistic design principles. First, RUBIK exploits
the locality, i.e., it tries to load balance VIP traffic gener-
ated within individual ToRs across the DIPs residing in
the same ToRs. This reduces the total traffic entering the
core network. Second, RUBIK exploits end-point flexi-
bility, i.e., it tries to place the DIPs for a VIP in the same
ToRs as the sources generating the VIP traffic.

To exploit locality, RUBIK uses a novel architecture
that splits the VIP-to-DIP mapping for a VIP into mul-
tiple “local” and a single “residual” mappings stored in
different HMuxes. The local mapping stored at a ToR
handles the traffic generated in the ToR across the DIPs
in the same ToR. The residual mapping assigned to an
HMux handles the traffic not handled by local mappings
and maximizes the total VIP traffic handled by HMuxes.

To exploit locality and end-point flexibility, RUBIK
faces numerous challenges. First, there are limited
resources — individual switches have limited memory
(where VIP-to-DIP mappings are stored) and individual
ToRs have limited servers (where DIPs can be assigned).
Also, individual DIPs (servers) have limited capacities.
Exploiting end-point flexibility is further compounded as
there are dependencies across services. The dependen-
cies arise because many large services are multi-tiered;
when a subservice at tier i receives a request, it spawns
multiple requests to the subservices at tier ({4 1). Be-
cause of such dependencies, traffic sources at a lower tier
are not known until DIPs in the higher tier are placed.
Furthermore, RUBIK needs to ensure that it assigns DIPs
that satisfy SLAs.

We develop a practical two-step solution to address all
of the above challenges. In the first step, we design an al-
gorithm to jointly calculate the DIP placement and map-
pings to maximize the traffic contained in ToRs while
satisfying various constraints using an LP solver. In the
second step, we use a heuristic assignment to maximize
the total traffic handled by HMuxes to reduce the costs.

Lastly, to adapt to the cloud dynamics such as changes
in the VIP traffic, failures, efc., RUBIK regularly updates
its local, residual mappings and DIP placement while
limiting the number of servers migrated.

We evaluate RUBIK using a prototype implementation
and DC-scale simulation using real traffic traces. Our
results show that compared to the prior art Duet, RUBIK
can reduce the maximum link utilization (MLU) of the
DC network by over 4x and the bandwidth usage by over
3x, while providing the same benefits as Duet.

In summary, this paper makes the following contribu-
tions. (1) Through careful analysis of the LB workload

from one of our production DCs, we show the high DC
network bandwidth usage by recently proposed LB de-
sign Duet and Ananta. (2) We present the design and
implementation of RUBIK that overcomes these ineffi-
ciencies by exploiting traffic locality and end-point flex-
ibility. To the best of our knowledge, this is the first
LB design that exploits these principles. (3) Through
testbed experiments and extensive simulations, we show
that RUBIK reduces the DC network bandwidth usage by
3x and the MLU by over 4x while providing a high per-
formance and highly available LB.

2 Background

In this section, we briefly explain the LB functionality,
workloads, and the Duet LB.

2.1 Load balancer

VIP indirection: A DC hosts thousands of online ser-
vices, e.g., news, sports [21, 14]. Each service exposes
one or more virtual IPs (VIPs) outside the service bound-
ary to receive the traffic. Internally, each service runs on
hundreds to thousands of servers. Each server in this set
has a unique direct IP (DIP) address. The task of the LB
is to forward the traffic destined to a VIP of a service to
one of the DIPs for that service. Such indirection pro-
vided by VIPs provides location independence: each ser-
vice is addressed with a few persistent VIPs, which sim-
plifies the management of firewall rules and ACLs, while
behind the scene individual servers can be maintained or
migrated without affecting the dependent service.

VIP traffic: In the Azure DC, 18-59% (average 44%)
of the total traffic is VIP traffic which requires load bal-
ancing [21]. This is because services within the same
DC use VIPs to communicate with each other to use the
benefits provided by the VIP indirection. As a result,
all incoming Internet traffic to these services (close to
30% of the total VIP traffic in our DC) as well as a large
amount of inter-service traffic (accounting for 70% of the
total VIP traffic) go through the LB. For a DC with 40k
servers, LB is expected to handle 44 Tbps of traffic at full
network utilization [21]. Such indirection of large traf-
fic volume requires a scalable, high performance (low
latency, high capacity) and highly available LB.

2.2 Workload Characteristics

We make the following observations about the VIP
traffic being load balanced in our production DC, by an-
alyzing a 24-hour traffic trace, for 30K VIPs.

The traffic sources and DIPs for individual VIPs
are scattered over many ToRs. Fig. 1 shows the num-
ber of ToRs where the traffic sources and DIPs for the top
10% VIPs which generate 90% of the total VIP traffic are
located. We see that traffic sources are widely scattered —
the number of ToRs generating traffic for each VIP varies
between 0-44.5% of the total ToRs. Also, the number of

0.8 P
LY S—
S o0 [—
02 ff Sources —— —
O 1 1
0 0.2 04 0.6 0.8 1

Number of ToRs
(Normalized to total number of ToRs)

Figure 1: Distribution of the number of ToRs where the
sources and DIPs are located.

0.8 / :
L 0.6 f pd
a
O 04 =
0.2
0 ol ! !
0 20 40

Ratio

Figure 2: Ratio of 99" percentile to average traffic vol-
ume for each VIP across all sources.

ToRs where the DIPs for a VIP are located varies be-
tween 0-58% of the total ToRs in the DC.

The traffic volume of sources per VIP are highly
skewed. We measure the traffic from all the ToRs for
each VIP. Figure 2 shows the CDF of the ratio of the 99"
percentile to the median per-ToR traffic volume for each
VIP. We see that the source traffic volume for each VIP
is highly skewed — the ratio varies between 1-35 (median
18) for the top VIPs generating 90% of the total traffic.
The large skew happens for multiple reasons, including
different numbers of servers, skew in the popularity of
the objects that are served, and locality [17, 10].

VIP dependencies: Many large-scale web services
are composed of multi-tier services, each with its own set
of VIPs. When the top-level service receives a request,
it spawns multiple requests to the services at the second
tier, which in turn send requests to services at lower tiers.
As aresult, the VIP traffic exhibit hierarchical dependen-
cies — the DIPs serving the VIPs at tier i become the traf-
fic sources for the VIPs at tier (i 4 1). We observe that
31.1% VIPs receive traffic from other VIPs. These VIPs
employ 25.1% of the total DIPs and contribute to 27.6%
of the total VIP traffic. The remaining 72.4% VIP traffic
comes from the Internet, other DCs, and other servers in
the same DC that are not assigned to any VIPs.

The dependency among the VIPs can be represented
in a DAG. The depth of the DAG observed is similar to
the depths reported by Facebook and Amazon [20].

2.3 Ananta LB

Ananta distributes the LB functionality among hun-
dreds of commodity servers called software Muxes
(SMuxes). Each SMux in Ananta stores VIP-to-DIP

Core

Agg

ToR

Servers (S)
& DIPs(D)

Container 1 | Container 2 o Container 3
Figure 3: Duet architecture. Links marked with solid and

dotted lines carry VIP and DIP traffic, respectively.

mapping for all the VIPs. When the VIP traffic hits one
of the SMuxes, it selects the DIP based on the hash cal-
culated over IP 5-tuple, and uses IP encapsulation to for-
ward the VIP traffic to the selected DIP. Using SMuxes
allows Ananta to be highly scalable, but is also costly,
where supporting 15 Tbps VIP traffic for a 40K-server
DC would require 4K SMuxes, and incurs high latency
of 200 usec to 1 msec for every packet handled by each
SMux [14].

24 Duet LB

Duet [14] LB design consists of hardware switches
and servers. Compared to Ananta, Duet lowers the LB
cost by 12-24x and incurs a small latency of a few mi-
croseconds by using existing switches for load balancing.
Duet runs hardware Mux (HMux) on every switch that
stores the VIP-to-DIP mapping in the switch (ECMP)
memory, splits the traffic for a VIP among its DIPs based
on the hash value calculated over the 5-tuple in the IP
header, and sends the packet to the selected DIP by en-
capsulating the packets using the tunneling table avail-
able in the switch.

However, switches have limited hardware resources,
especially the routing and tunneling table space. The
tunneling table size (typically 512 entries) limits the total
number of DIPs (for multiple VIPs) that can be stored on
a single HMux. Accordingly, Duet partitions the VIP-to-
DIP mappings across HMuxes, where the mappings for
a small set of VIPs are assigned to each HMux. This
way of partitioning enables Duet to support a large num-
ber of DIPs. Second, the routing table size (typically
16K entries) per switch limits the total number of VIPs
that can be supported in HMuxes. Therefore, Duet uses
HMuxes to handle up to 16K elephant VIPs. The remain-
ing mice VIP (that could not be assigned to any of the
HMuxes) traffic is handled by deploying a small number
of SMuxes, which have the same design as in Ananta.
These SMuxes also load balance traffic otherwise han-
dled by HMuxes during HMux failures which enables
Duet to provide high availability.

3 Motivation
We next assess the impact of the VIP traffic character-
istics (§2.2) on the DC network bandwidth usage under

1

=) R MLU ?
~= 0.8 o Traffic 18
£<=06 X o
%5) £
3% 0.4) s
=5) =
= 0.2 3N [
el B g
Duet Direct Closest

Figure 4: MLU and total traffic under various LB
schemes. Total traffic is measured across all the DC net-
work links.

Duet | Direct | Closest
547 | 3.94 1.78
Table 1: Path length for different LB designs.

the Duet LB. We simulate how Duet handles the VIP traf-
fic using a 24-hour traffic trace from our production DC
on a network topology that closely resembles our pro-
duction DC. The topology, workload, and results are de-
tailed in §10. Duet maximizes the total traffic handled by
HMuxes, on average 97% in the 24-hour period.

High link utilization. Figure 4 shows the MLU and total
traffic in the DC network!. While Duet is able to handle
97% of the total VIP traffic by leveraging HMuxes, it
also inflates the MLU to 0.98 (or 98%). This high MLU
can be explained by two design decisions of Duet.

First, Duet assigns a VIP only to a single HMux.
But the traffic sources and DIPs for individual VIPs are
spread in a large number of ToRs (Figure 1). The di-
verse location of traffic sources and DIPs per VIP sug-
gests no matter where the single Mux for a VIP is po-
sitioned in the network, it will be far away from most of
the traffic sources and DIPs for that VIP, and hence most
VIP traffic will traverse through the network to reach the
HMuzxes and then the DIPs, which inflates the path length
between the sources and DIPs.

Table 1 shows that the average number of hops be-
tween the sources and the DIPs across all individual VIPs
is 5.47 in Duet. Notice that the traffic between two hosts
that does not go through the LB would have a maximum
of 4 hops (ToR-Agg, Agg-Core, Core-Agg, Agg-ToR).
Thus the average path length of 5.47 in Duet indicates
that most traffic goes through the core links and further
experiences some detour in the DC network. Figure 3
shows an example where the VIP-1 traffic originated at
S1 has to travel 6 hops to reach DIP D; — 3 hops to reach
the HMux at switch A3, and 3 more hops to reach D;.

To dissect the impact of the redirection, we measure
the MLU and total traffic in the DC network in a hypo-
thetical case where the HMuxes are located on a direct
path between the sources and DIPs, labeled as “Direct”.
Figure 4 shows that in this case the MLU is reduced to
0.46 (from 0.98 in Duet), and the bandwidth used is low-

! Absolute values for “total traffic” are omitted for confidentiality.

ered by 1.36x, compared to Duet. Also, the average path
length in “Direct” is lowered to 3.94 (1.38x improve-
ment). This means the redirection design in Duet inflates
the MLU by 2.13x and bandwidth used by 1.36x.

The second cause for the high link utilization is
location-oblivious DIP selection in Duet. The HMux
splits the VIP’s traffic by hashing on the 5-tuples in the
IP header, and chooses the DIP based on the hash. Thus,
even if there is a DIP located under the same ToR as the
HMux and has the capacity to handle all the local traffic
for the VIP, the HMux will spread the local traffic among
all DIPs, many of which can be far away in the DC.

To measure the impact of location-oblivious DIP se-
lection, we measure the MLU and bandwidth used in a
hypothetical case, where the traffic from the individual
sources is routed to the closest DIP and assuming the
HMuxes lie on the path. This mechanism is labeled as
“Closest”. Figure 4 shows that the MLU is reduced to
just 0.08, and the bandwidth used reduces by 3.19x com-
pared to Duet. Also, the average path length is lowered
to just 1.78 hops.

Effective full bisection bandwidth reduced at core.
Many DC networks have adopted topologies like FatTree
and Clos [15] to achieve full-bisection bandwidth. Such
networks guarantee that there is enough aggregate capac-
ity between Core and Agg switches as between Agg and
ToR switches, and hence the core links will never be-
come a bottleneck for any traffic between the hosts.

However, traffic indirection can break this assumption,
if the HMuxes reside in Agg or ToR switches. This hap-
pens to Duet, as Duet considers all the switches while
assigning VIP-to-DIP mappings. This is illustrated in
Figure 3. When VIP; is assigned to an Agg switch (Aj3),
the traffic from source S; travels the core links twice en-
route to DIP Dy — first to get to HMux Aj3, and then to
D;. In contrast, direct host-to-host traffic only has to tra-
verse core links at most once. As a result, the effective
bandwidth in the core links is reduced — in Figure 3, the
available bandwidth to container-2 (servers S3-Sg) is re-
duced due to the LB traffic among other containers.

Our evaluation in §10.3 shows the traffic overhead in
Duet, i.e., the ratio of the additional traffic due to redirec-
tion to the total traffic without redirection is 44% in core
links and 16% in containers. This means the remain-
ing bisection bandwidth of the Agg-Core links is lower
than the remaining bisection bandwidth in the ToR-Agg
links. This breaks the full-bisection guarantee provided
by the FatTree or Clos, which jeopardizes other applica-
tions that co-exist in the DC and assume full-bisection
bandwidth is available (e.g., [12, 23]).

4 RUBIK Overview
In the previous section, we saw that the traffic indirec-
tion in Duet incurs substantial overhead in the DC net-

work bandwidth usage. In this paper, we propose a new
LB design, RUBIK, that significantly reduces the band-
width usage in the DC network while providing low cost,
high performance and high availability benefits.

RUBIK is based on two key ideas motivated by the ob-
servations in the last section. First, it exploits locality,
i.e., it tries to load balance traffic generated in individ-
ual ToRs across the DIPs present in the same ToRs. In
this way, a substantial fraction of the load balanced traf-
fic will not enter the links beyond ToRs which reduces
the DC network bandwidth usage and MLU.

The second key idea of RUBIK is to exploit DIP place-
ment flexibility to place DIPs closer to the sources. In
RUBIK online services specify the number of DIPs for
individual VIPs, and RUBIK decides the location of the
servers to be assigned to individual VIPs. This idea is
synergistic with the first idea, as it facilitates exploiting
locality in load balancing within ToRs.

Realizing the two ideas is challenging, because (1)
there are a limited number of servers in each ToR where
DIPs can be assigned, (2) switches have limited memory
for storing VIP-to-DIP mappings, (3) a VIP may have
traffic sources in more ToRs than the total number of
DIPs for that VIP. In such a case, a DIP cannot be as-
signed in every ToR that has traffic sources, (4) depen-
dencies between the VIPs make it even harder, as the
sources to some of the VIPs are not known until DIPs
for other VIPs are placed.

RUBIK addresses the above capacity limitations
(switch memory and DIPs in a ToR) using two compli-
mentary ideas. First, RUBIK uses a new LB architecture
that splits the VIP-to-DIP mapping for a VIP across mul-
tiple HMuxes to enable efficient use of switch memory
while containing local traffic. Second, it employs a novel
algorithm that calculates the most efficient use of switch
memory for containing the most local traffic.

5 RUBIK Architecture

RUBIK uses a new LB design that splits the VIP-to-
DIP mapping for each VIP into multiple local and a sin-
gle residual VIP-to-DIP mappings. This idea is inspired
by the observation that the traffic for individual VIPs is
skewed (§2.2) — some ToRs generate more traffic than
other ToRs for a given VIP. In RUBIK, we assign lo-
cal mappings to the ToRs generating large fractions of
the traffic and also assign enough DIPs to handle those
traffic. The local mapping for a VIP load balances traf-
fic for that VIP across the DIPs present under the same
ToR (called local DIPs). We then assign a single residual
mapping for that VIP to handle the traffic from all the
remaining ToRs, where no local mapping is assigned.

Effectively, the VIP-to-DIP mapping for a VIP is split
across the local and residual mappings such that a single
DIP appears in only one mapping. Assigning a DIP only

Core C, C,
SN
Agg Ay
2
ToR T, .
K K
2ol 1 ey
Container 1 Container 2 Container 3

Figure 5: RUBIK Architecture. DIPs for VIP; are split in
local (HMux-L) and residual mappings (HMux-R).

once makes the most efficient use of the limited tunneling
table space of HMuxes so the total VIP traffic handled by
the HMuxes can be maximized. The assignment module
(§6) then calculates the actual assignment that maximizes
the VIP traffic handled locally.

We now explain the RUBIK architecture in detail.

Local mapping. If some of the sources and DIPs for
a VIP already reside in the same ToR, RUBIK exploits
this locality by load balancing the source traffic across
those local DIPs. To ensure that the traffic does not flow
outside the ToR in detouring through the HMux, RUBIK
stores a subset of the VIP-to-DIP mapping, i.e., contain-
ing only the local DIPs, at the ToR itself (e.g., HMux
T, in Fig. 5). We denote such a mapping containing the
subset of local DIPs as a local mapping.

Residual mapping. For an individual VIP, we assign a
single residual mapping to handle the remaining traffic
not handled by the local mappings (called residual traf-
fic). We pool all the remaining DIPs for a VIP together
in a single DIP-set, called the residual mapping for that
VIP (e.g., HMux on C; and As in Fig. 5). The residual
mapping for each VIP announces the VIP using BGP so
that other routers (or switches) route the VIP traffic to the
HMux where its residual mapping is assigned.

In principle, we can replicate the residual mapping at
all the ToRs containing any remaining traffic sources.
Such replication can reduce the number of hops between
the sources and HMux, but it can also consume a signifi-
cant amount of the limited tunneling table space. There-
fore, we only assign the residual mapping for a VIP to a
single HMux, and the optimal choice of HMux to store
the residual mapping of a VIP depends on the location of
the remaining traffic sources and residual DIPs.

VIP routing. The above DIP-set splitting design has one
potential problem. If the HMuxes storing either the local
mappings or the residual mapping of a VIP all announce
the VIP via BGP to the network, some of the residual
source traffic may be routed towards the HMuxes storing
local mappings if they are closer than the HMux storing
the residual mapping. This would significantly compli-
cate the DIP placement, and DIP-set splitting and place-
ment problem. We avoid this complication by making the

HMuxes storing local mappings not announce the VIP
via BGP. In this way, only local source traffic within a
ToR sees the local mapping and is split to the local DIPs.

SMuxes. Because of the limited switch memory, the
numbers of VIPs and DIPs supported by HMuxes re-
main limited. Current HMuxes can support up to 16K
VIPs [14], and our DC has 30K+ VIPs. Also, it remains
challenging to provide high availability during HMux
failures. We address both problems by deploying a small
number of SMuxes as a backstop, to handle the VIP traf-
fic that could not be handled using HMuxes. We also
announce all the VIPs from all SMuxes. We use Longest
prefix matching (LPM) to: (1) preferentially route the
VIP traffic to the HMuxes for the VIPs assigned to both
HMuxes and SMuxes, (2) route the traffic to the remain-
ing VIPs not assigned to HMuxes to the SMuxes.

The use of SMuxes in this way also provides high
availability during residual mapping failure. §7 gives de-
tails on how RUBIK recovers from a variety of failures.

Summary. The benefits of this architecture can only be
realized by carefully calculating the DIP placement, and
local and residual mappings for individual VIPs subject
to a variety of constraints, which we describe next.

6 Joint VIP and DIP Assignment

RUBIK’s objective is to maximize the traffic handled
by the HMuxes, while maximizing the traffic handled lo-
cally within ToRs. The assignment algorithm determines
for each VIP, (1) the location of its DIPs; (2) the number
of DIPs in each ToR in the local VIP-to-DIP mapping;
and (3) the number of DIPs in the residual mapping, and
the HMux assigned to store the mapping.

RUBIK needs to calculate this assignment such that
the capacity of all resources (switch tables, links, and
servers per ToR) is not be exceeded. Also, RUBIK needs
to ensure that it assigns DIPs in the failure domains (i.e.,
ToRs) specified by the online services. The placement
calculated at a given time may lose effectiveness over
time as the VIP traffic changes, and VIPs and DIPs are
added and removed. To adapt to such cloud dynam-
ics, RUBIK reruns the placement algorithm from time to
time. While calculating a new assignment, RUBIK has
to ensure that the number of machines migrated from the
old assignment is under the limit.

The assignment problem is a variant of the bin-
packing problem (NP-hard [11]), where the resources are
the bins, and the VIPs are the objects. It is further com-
pounded because the VIP traffic exhibits hierarchical de-
pendencies (§2.2).

To reduce the complexity, RUBIK decomposes the
joint assignment problem into two independent modules,
(1) DIP and local mapping placement, (2) residual map-
ping placement, as shown in Algorithm 1. The first mod-
ule places the DIPs and local mappings for all the VIPs to

Algorithm 1: RUBIK Assignment Algorithm

Input: V.M,N,, f,,,S,L,b; ,C;

Output: x,l?v,xff’v

topological_sort(V in DAG)

for [= 1, depth of DAG do
local_mapping_and_dip_placement(VIPs in
DAG level(l))

6 end

7 residual_mapping_placement()

[N R N I

l Notation Explanation
Input
S,L,V Sets of switches, links, and VIPs
M, # servers under ¢-th ToR
Ts Table capacity of s-th switch
L, Link traffic capacity of link e
Ny, fy #DIPs and failure-domain for v-th VIP
bry Traffic sent to v-th VIP from 7-th ToR
Cry Traffic capacity of server in t-th ToR when
assigned to v-th VIP
Variables
xtl?v Number of servers (DIPs) in z-th ToR
assigned to v-th VIP
el Number of table entries in #-th ToR
' assigned to v-th VIP

Table 2: Notations used in the algorithm.

maximize the total traffic load-balanced locally on indi-
vidual ToRs. We calculate DIP and local mapping simul-
taneously, because the problem of DIP and local map-
ping placement are intertwined, as the traffic for a VIP is
contained within a ToR only if the ToR has (1) enough
DIPs to handle the traffic, and (2) enough memory to
store the corresponding VIP-to-DIP mapping.

Since the VIP traffic exhibits hierarchical dependen-
cies (§2.2), we create a DAG that captures the traffic
flow and hence the dependency between the VIPs, and
then perform a topological sort on the DAG to divide the
VIPs into different levels. We then place the DIPs and
local mappings for the VIPs level-by-level (lines 3:6 in
Algo. 1). As we place DIPs for VIPs in one level, the
sources in the next level become known.

The second module places the residual mappings of
all the VIPs to maximize the total traffic handled by
HMuxes. The residual mapping placement subproblem
remains NP-hard. But, the residual VIP traffic is typi-
cally only a small portion of the total traffic and hence
we can apply heuristics to solve it without significantly
affecting the quality of the overall solution (line 7).

6.1 DIP and Local Mapping Placement
The first module places the DIPs and the local map-

pings of all the VIPs for which the sources are known

such that the total VIP traffic load balanced within the

ToRs is maximized. We formulate the joint DIP and lo-
cal mapping placement problem as ILP using notations
shown in Table 2 as follows.

Input: The input includes (1) the network topology and
resource information (capacity of switch tables, links,
and servers in the ToRs), (2) for every VIP in current
level, the number of DIPs and number of failure domain
and traffic, and (3) max. number of DIPs to migrate (8).
Output/Variables: The output includes the local VIP-
to-DIP mappings on individual ToRs, and placement of
all the DIPs (including residual DIPs), for all VIPs.

Let va denote the number of machines in the ¢-th ToR
assigned as the DIPs for the v-th VIP, and xﬁ"’v denote the
number of machines out of these x”, machines that are
used in the local mapping for the VIP, i.e., they will ap-
pear in the local VIP-to-DIP mapping of the 7-th ToR.
Objective:
maximize Locality L = Z Z y%, by

veVteT
where yfv is set if there are any DIPs in the 7-th ToR
assigned to the v-th VIP, and yﬁ‘f’v is set if the ¢-th ToR
switch (HMux) contains local VIP-to-DIP mapping for
the v-th VIP. This way, yﬁ‘”v - b;, denotes if traffic for v-
th VIP in t-th ToR is handled locally, and we maximize
traffic handled locally across all VIPs and ToRs.

v 1A=l p_ 1 B>l
Vi 0 Otherwise i 0 Otherwise

Constraints:
(1,2) Switch table size and number of servers not ex-
ceeded on every ToR
VeeT,Y X <T, Y xP, <M,
veVv veV
(3,4) Specified number of DIPs assigned for every
VIP; failure domain constraints

VVGV,ZXE‘,:NV7 ny?vva

teT teT
(5a, 5b) DIPs are not overloaded (no hot-spots)

Vi €TV eV,y by < Cr

Yv e V, Z(l —y%,) 'bt,v < Z(-xtl,)v _x%) .Cth

teT teT
Constraint (5a) ensures the DIPs mapped in the local
mapping are not overloaded. Constraint (5b) ensures the
DIPs in the residual mapping are not overloaded.
(6) Limiting the number of DIP moves
Z |x%_x%01d‘ < S
veVieT

where x%’”ld denotes the number of DIPs in the ToR in

the previous assignment, and 6 is the threshold on the
maximum number of DIPs to be moved. We convert con-
straint (6) into the linear form as:

2: Q47§ 0

veVieT
M.old M.old
VtE T,V eV, > x50 — " 2oy = X0 —xﬁ‘fv

(7) ToRs have more DIPs than in local mappings
WeV,teTxp, >x"

(8a,8b) Writing y, yP, in linear form
Vi e T,V eV,0 <y yP, <1y <x 3P, <P,

t,v
6.2 Residual Mapping Placement

The second module places the residual mappings for
the VIPs among the switches while maximizing the to-
tal VIP traffic load balanced by the residual mapping
HMuxes (traffic not handled by local mappings), subject
to switch memory and link capacity constraints.

This assignment problem is the same as that in Duet,
and we solve it using the same heuristic algorithm as in
Duet. Briefly, to assign the VIPs, we first sort the VIPs in
decreasing traffic volume, and attempt to assign them one
by one. We define the notion of maximum resource uti-
lization (MRU). MRU represents the maximum utiliza-
tion across all resources — switches and links. To assign
a given VIP, we consider all switches as candidates. We
calculate the MRU for each assignment, and pick the one
that results in the smallest MRU, breaking ties at random.
If the smallest MRU exceeds 100%, i.e., no assignment
can accommodate the traffic of the VIP, the algorithm
terminates. The remaining VIPs are not assigned to any
switch — their traffic will be handled by the SMuxes.

7 Failure Recovery

A key requirement of the LB design is to maintain
high availability during failure: (1) the traffic to any VIP
should not be dropped, (2) existing connections should
not be broken. As in Duet, RUBIK relies on SMuxes to
load balance the traffic during various failures. In addi-
tion to storing VIP-to-DIP mapping for all the VIPs, we
use the ample memory on individual SMuxes to provide
connection affinity by maintaining per-connection state.

Residual mapping HMux failure: Failure of the
HMux storing the residual mapping of a VIP only af-
fects the traffic going to that HMux; the traffic handled
by other local and residual mappings is unaffected. The
routing entries for the VIPs assigned to the failed HMux
are removed from all other switches via BGP withdraw
messages. After routing convergence, traffic to these
VIPs is routed to the SMuxes, which announce all VIPs.
Since each SMux stores the same residual DIPs and uses
the same hash function as the residual mapping HMux to
select a DIP, existing connections are not broken.

Local mapping failure: When a ToR switch fails, all
the sources and DIPs for a VIP under it are also discon-

Rubik Controller

VIP and DIP
) > . .
Settings Assignment Engine Q

Topolog yraffic VIP-switch
o Health assignment
Datacenter |
I Monitoring

I Network Driver |
Traffic / Rules

Figure 6: RUBIK implementation.

nected. As aresult, the traffic the local mapping was han-
dling also disappears. Further, the rest of the traffic for
that VIP continues to be routed to the residual mapping
or other local mappings, and are not affected.

SMux failure: On an SMux failure, traffic going to
that SMux is rerouted to the remaining SMuxes using
ECMP. The connections are not broken as all the SMuxes
use the same hash function.

DIP failure: Existing connections to the failed DIP
would necessarily be terminated. For VIPs whose map-
ping are assigned to SMuxes, connection to the remain-
ing DIPs are maintained as SMuxes use consistent hash-
ing in DIP selection [21]. For VIPs assigned to HMuxes,
the connections are maintained using smart hashing [2].

8 Implementation

We briefly describe the implementation of the three
building blocks of RUBIK, (1) RUBIK controller, (2) net-
work driver, (3) HMux and SMux, as shown in Figure 6.

RUBIK controller: The controller orchestrates all
control activities in RUBIK. It consists of three key mod-
ules: (1) DC monitor, (2) Assignment engine, (3) Net-
work driver. The DC monitor periodically captures the
traffic and DIP health information from the DC network
and sends it to the assignment engine. The assignment
engine calculates the DIP placement, local and resid-
ual VIP-to-DIP mappings for all the VIPs, and pushes
these new assignment to the network driver. We use
CPLEX [7] to solve the LP (§6.1).

Network driver: This module is responsible for
maintaining VIP and DIP traffic routing in the LB.
Specifically, when the VIP-to-DIP assignment changes,
the network driver announces or withdraws routes for the
changed VIPs according to BGP.

HMux and SMux: We implement HMuxes and
SMuxes using Open vSwitches that split the VIP traf-
fic among its DIPs using ECMP based on the source
addresses [5]. We implement smart hashing [2] using
OpenFlow rules. The replies from the DIPs directly go
to the sources using DSR [21].

Lastly, we use POX to push the rules and poll the traf-
fic statistics. We developed a separate module to monitor
the DIP health. The code for all the modules consists of

Core
s'
Agg 1 2 7 8
ToR 1 2 7 8
Server
+ SMux SIISIIM |S|S|IM SIISIIM |s|ls|M
Container-1 Container-4

Figure 7: Our testbed. FatTree with 4 containers con-
nected to 4 Core switches.

Background -e- VIP-5 -
VIP-1
Duet Rubik
100 ~ 3
Ao Y
g 80 f[,*ui:,\ 7’ﬁ&\'ﬁpw
£2 60 |+]
22 ol \ I /
93 40 / i ! i
£ h
Ty sy |
0 v
0 10 20 30 0 10 20 30
Time (sec) Time (sec)

Figure 8: RUBIK reduces congestion.
3.4K LOC in C++ and Python.

9 Testbed

Setup: We evaluate RUBIK prototype using Open
vSwitches and Mininet. Our testbed (Fig. 7) consists
of 20 switches (HMuxes) in 4 containers connected in a
FatTree topology. Each ToR contains an SMux (marked
“M”) and 2 hosts that can be set as DIPs (marked “S”).

Services: We evaluate the performance of RUBIK us-
ing two services that require load balancing: (1) HTTP
web service, (2) Bulk data transfer service. The web ser-
vice serves static web pages of size 1KB and generates
a large number of short-lived TCP flows. The Bulk data
transfer service receives a large amount of data using a
small number of long-lived TCP flows. All the servers
and clients for these services reside in the same DC.

Experiments: Our testbed evaluation shows: (1)
RUBIK lowers congestion in the network; (2) RUBIK
achieves high availability during a variety of failures —
local mapping, residual mapping, and DIP failure.

9.1 Reduction in Congestion

First we show that RUBIK reduces congestion in the
DC network by using local mappings. In this experi-
ment, initially 4 VIPs (each with 1 source and 1 DIP) are
assigned to 4 different HMuxes. Additionally, there is
background traffic between 2 hosts. Figure 8 shows the
per-second throughput measured across 2 flows. “VIP-
1” denotes the throughput for one of the 4 VIPs added
initially. “Background” denotes the throughput for the
background flow (not going through the LB). Initially,
there is no congestion in the network and as a result all
flows experience high throughput. At time 15 sec, we
add a new VIP (VIP-5) that has 2 DIPs and 2 sources
sending equal volume of traffic, and assign it using Duet.

[VIPonHMux e VIPonSMux +]

Tfail Trecover
. L TR S Couten [T T R WL
8 VIP, - Residual
0
£2
= # oo S SN "..‘.ﬁ-\n.'.."'.*":ﬂ
8 0 VIP, - Local
g2
3 .'.'.‘a...‘..fv'-'.'.‘-".*.'a.’.»’fd"’#..‘.’--..""..»(
0 VP,
0 200 400 600 800 1000
Time (msec)

Figure 9: VIP availability when residual mapping fails.

However, assigning the new VIP causes congestion as
the new flows compete with the old flows. As a result,
the throughput for all the flows drop by almost 5-6x.

We repeat the same experiment with RUBIK. At time
15 sec, we assign the VIP-5 using RUBIK. RUBIK as-
signs local mappings to handle the VIP-5 traffic. As
a result, adding VIP-5 does not cause congestion (no
drop in throughput), as shown in Figure 8. This exper-
iment shows that by exploiting locality, RUBIK reduces
the congestion and improves the throughput by 5-6x.

9.2 Failure Mitigation

Next we show how RUBIK maintains high availability
during various failures.

Residual mapping failure: Fig. 9 shows the avail-
ability of the VIP, measured using ping latency, when its
residual mapping fails. In this experiment, we have 3
VIPs (VIP-1, 2, 3) assigned to the data-transfer service.
VIP-1 and VIP-2 have one source and one DIP each in
different ToRs, and their traffic is handled by residual
mappings (no local mapping). VIP-3 has two sources
and two DIPs. One source and one DIP are in the same
ToR — the local mapping on that ToR handles their traffic.
The remaining source and DIP are in two different ToRs,
and their traffic is handled by the residual mapping.

At 400 msec, we fail the HMux storing the residual
mapping for VIP-3. We make four observations: (1) On
HMux failure, VIP-3 traffic handled by it is lost for 114
msec. (2) After 114 msec, VIP-3 is 100% available, i.e.,
all of the pings are successful again. During this time,
the routing converges, and the traffic that used to go to
the HMux is rerouted to the SMuxes. (3) The traffic for
VIP-3 handled by the local mapping (shown as VIP-3-
Local) is not affected — no ping message is dropped. (4)
Other VIPs (only VIP-1 is shown) are not affected — their
ping messages are not dropped.

This shows that RUBIK provides high availability dur-
ing residual mapping failure.

Local mapping failure: Figure 10 shows the impact
of local mapping failure on the availability of the VIPs.
We use the same setup as before, and fail the HMux
where VIP-3’s local mapping was assigned. We measure
the ping message latency from 2 sources for VIP-3 (de-

[Local « Residual «]
S 2 - Tfail
Q k—#uﬁa—.—-.'-".-.*.‘- ‘
[72)
£ 0 Client-2
>
Q2
5 *“Mu“:‘mﬂ&M..‘A.m‘.«“mm*‘.‘m“mxm.{
© 0 Client-1
—
200 400 600 800 1000
Time (msec)

Figure 10: VIP availability during local mapping failure.

[DIP-1__ - DIP-2 «]

Tfail Trecover

— 2
(o] 4 A
[0} %o oo, o, Y
g 0 a-\enﬂ.-'-w“ "aSoce R PO ﬁ&l“#
g2 x
2 ﬁMAAA‘mAMMMMM“M‘A‘A‘ DWW u..m.&#
i]“ 0 ienty
0 200 400 600 800 1000

Time (msec)

Figure 11: VIP availability during DIP failure.

noted as Client-1, 2). The traffic from Client-2 is handled
locally, whereas Client-1 traffic is handled by the resid-
ual mapping. When local mapping fails (at 500 msec), all
the sources and DIPs under it disappear. Therefore, ping
messages for Client-2 are lost as Client-2 itself is down.
Figure 10 shows that the traffic from Client-1, which is
handled by the residual mapping, is not affected.

DIP failure: Lastly, we evaluate the impact of DIP
failure on service availability. In this experiment, we
use a single VIP with 2 sources (Client-1, 2) and 2 DIPs
(DIP-1, 2), located in different ToRs. Therefore, both
DIPs are assigned to the residual mapping. Initially,
the traffic from Client-1 is served by DIP-1 and that of
Client-2 is served by DIP-2. We fail DIP-2 at 500 msec.

Figure 11 shows the latency for the ping messages
from Client-1 and Client-2. When DIP-2 fails, the ping
messages for Client-2 are lost for about 120 msec. After
120 msec, Client-2 traffic is served by DIP-1. This is be-
cause when DIP-2 fails, the residual mapping is adjusted
using smart-hashing, i.e., the traffic going to the failed
DIP is split across the remaining DIPs. As a result, the
traffic going to DIP-2 is now served by DIP-1. It can also
be seen that Client-1 traffic is not affected — there is no
drop in the ping messages. This shows that a DIP failure
does not affect the traffic going to other DIPs, and traffic
going to the failed DIP is spread across remaining DIPs.

10 Simulation

In this section, we use large-scale simulations of RU-
BIK and Duet to show: (1) RUBIK handles a large per-
centage of traffic in HMuxes as in Duet but incurs signif-
icantly lower maximum link utilization (MLU); (2) RU-
BIK reduces the traffic in the core by 3.68x and in the
container by 3.47x; (3) RUBIK contains 63% of VIP traf-
fic within ToRs; (4) RUBIK does not create hotspots.

Network: Our simulated network closely resembles

Lo
©Tw
j=g)
— 0
SE
(o]
'_
0 5 10 15 20
Time (hour)

Figure 12: Total traffic variation over 24 hours.

Rubik -@- Duet -
100 Rubik-LO -
8O oo S M
60 K

n M
o o

«
s

% traffic offloaded
to HMuxes

o

20 40 60 80
Maximum link utilization (%)

Figure 13: Traffic handled by HMuxes vs. MLU.

100

that of a production DC, with a FatTree topology con-
necting 500K VMs under 1600 ToRs in 40 containers.
Each container has 40 ToRs and 4 Agg switches, and the
40 containers are connected with 40 Core switches. The
link and switch memory capacity were set with values
observed in the production DC.

Workload: We run the experiments using traffic trace
collected from the production DC over a 24-hour dura-
tion. The trace consists of the number of bytes sent be-
tween all sources and all VIPs. Figure 12 shows the total
traffic per hour fluctuates over the 24-hour period?.

Comparison: We compare the performance of Duet,
RUBIK-LO and RUBIK. Duet exploits neither locality
nor DIP placement. RUBIK-LO is a version of RU-
BIK that only exploits locality without moving the DIPs;
it assumes DIP placement is fixed and given, and only
calculates the local and residual mappings. RUBIK ex-
ploits both locality and flexibility in moving the DIPs.
RUBIK performs stage-by-stage VIP-to-DIP mapping as-
signment following the VIP dependency.

10.1 MLU Reduction

We first compare the trade-off between the MLU and
fraction of the traffic handled by the HMuxes under the
three schemes. Note that all three schemes try to maxi-
mize the total traffic handled by HMuxes. The traffic not
handled by HMuxes is handled by SMuxes.

Figure 13 shows the fraction of traffic handled by
HMuxes under the three schemes. The MLU shown is
the total MLU which resulted from load balancing all
VIP traffic, handled by HMuxes and by SMuxes. We see
that Duet can handle 97% traffic using HMuxes, but in-
curs a high MLU of 98%. But when MLU is restricted to
47%, Duet can only handle 4% traffic using HMuxes.

In contrast, RUBIK-LO handles 97% VIP traffic using

2 Absolute values are omitted for confidentiality.

10

Rubik @~ Rubik-LO

—_
w0 o
o o

o

nN B o
o o

% traffic handled
locally

o

o
[¢)]

10
Time (hour)

Figure 14: Traffic handled using local mappings.

Baseline ===
Overhead Ex==

Duet Rubik-LO Rubik
Container

Total Traffic (Tbps)
T

Duet Rubik-LO Rubik
Core

Figure 15: Total traffic in core and container.

HMuxes at MLU of 51%. It handles 52% of VIP traffic
using HMuxes at MLU of 35%. This improvement over
Duet comes purely from exploiting locality.

Lastly, RUBIK significantly outperforms both Duet
and RUBIK-LO. It handles 97% traffic with a low MLU
of 22.9%, a 4.3x reduction from Duet. Also, at a MLU
of 12%, RUBIK handles 94% traffic using HMuxes.

10.2 Traffic Localized

RUBIK significantly reduces the MLU by containing
significant amount of traffic within individual ToRs. Fig-
ure 14 shows the fraction of the total traffic contained
within ToRs in RUBIK and RUBIK-LO over the 24-hour
period, where these mechanisms calculate new assign-
ment every hour. In RUBIK, we limit the machine moves
to 1% based on the trade-off detailed in §10.5.

We see that RUBIK-LO localizes 25.5-43.4% (average
34.8%) of the total traffic within ToRs, and RUBIK local-
izes 46-71.8% (average 63%) of the total traffic within
ToRs. Additionally, for the VIPs generating 90% of the
total VIP traffic, we find that, the local mappings han-
dle traffic from 37.8-48.6% (average 41.8%) sources, and
50.2-57.7% (average 53%) of the total DIPs are assigned
to their local mappings.

10.3 Traffic Reduction

Figure 15 shows the total bandwidth usage across all
the links caused by the VIP traffic under the three mech-
anisms. We separately show the total traffic on the core
links (between Core and Agg switches) and containers
links (between ToR and Agg switches). The total traf-
fic shown is the average over 24 hours. Furthermore, we
break down the total traffic into baseline and overhead
due to redirection. The baseline traffic shows the amount
of traffic generated if the HMuxes were on the direct path
between source and DIPs, which would cause no redirec-
tion. The remaining traffic is the extra traffic due to the

Rubik-Max —
Rubik-Median
Rubik-LO-Max =—

Rubik-j_O-Medi§n

0.6 0.8 1

0.4
DIP Utilization (DIP traffic/capacity)

Figure 16: DIP utilization distribution across VIPs.

B 100 Traffic xx3 MLU =3

5 80 0.8

E% 60 06 o

%5 40 04 =

EdiSHNE N NERE
13.7 5 3 1

% Machines moved
Figure 17: Impact of machine moves.

redirection to route traffic to and from HMuxes.

RUBIK and RUBIK-LO significantly reduce the total
traffic in the core network and containers. Compared to
Duet, on average RUBIK-LO reduces the total traffic by
1.94x and 1.88x, respectively. RUBIK reduces the total
traffic by 3.68x and 3.47x, respectively.

Secondly, RUBIK-LO and RUBIK reduce the traffic
overhead due to traffic redirection by 2.1x and 10.9x
compared to Duet. It should be noted that both RUBIK
and RUBIK-LO cannot eliminate the traffic overhead, be-
cause they cannot localize 100% of the VIP traffic. As a
result, the traffic not localized is handled by the HMuxes
storing residual mappings, which causes traffic detour.

10.4 DIP Load Balance

To exploit locality, RUBIK partitions the DIPs for a
VIP into local and residual DIP-sets, which can poten-
tially overload some of the DIPs (hotspots). We cal-
culate the average and peak DIP utilization (DIP traf-
fic/capacity) across all DIPs for every VIP. Figure 16
shows the CDF across all VIPs in RUBIK and RUBIK-
LO. It shows that both schemes ensure that the peak uti-
lization for all the DIPs is well under 80%, which is the
constraint given to the assignment algorithm. Further-
more, for 80% VIPs, the peak utilization is under 40%.
This shows RUBIK does not create hotspots.

10.5 Impact of Limiting Machine Moves
Lastly, we evaluate the impact of limiting machine
moves in RUBIK’s assignment LP formulation (§6.1) on
the fraction of traffic localized and MLU. Figure 17
shows the two metrics as we reduce the percentage ma-
chine moves allowed. Without any restriction, RUBIK
assignment results in moving 13.7% of the DIPs. When
the percentage machine moves is 1%, the fraction of traf-
fic localized decreases by 8.7% whereas the MLU in-

11

creases by 6.6%, and the execution time to find the solu-
tion increases by 2.3x compared to unrestricted machine
moves. This shows that most of the benefits of RUBIK
are maintained after restricting the machine moves to just
1%. We therefore used this threshold in all the previous
simulations and testbed experiments.

11 Related work

To our best knowledge, RUBIK is the first LB design
that exploits locality and end-point flexibility. Below we
review work related to DC LB design which has received
much attention in recent years.
LB: Traditional hardware load balancers [4, 1] are ex-
pensive and typically only provide 1+1 availability. We
have already discussed Duet [14] and Ananta [21] load
balancers extensively. Other software-based load bal-
ancers [6, 8, 9, 3] have also been proposed, but they lack
the scalability and availability of Ananta [21]. In contrast
to these previous designs, RUBIK substantially reduces
the DC network bandwidth usage due to traffic indirec-
tion while providing low cost, high performance benefits.
OpenFlow based LB: Several recent proposals focus on
using OpenFlow switches for load balancing. In [24],
the authors present a preliminary LB design using Open-
Flow switches. They focus on minimizing the number
of wildcard rules. In [18], the authors propose a hybrid
hardware-software design and propose algorithms to cal-
culate the weights for splitting the VIP traffic. Plug-n-
Serve [16] is another preliminary design that uses Open-
Flow switches to load balance web servers deployed in
unstructured, enterprise networks. In contrast, RUBIK is
designed for DC networks and efficiently load balances
the traffic by exploiting locality and end-point flexibility.
SDN architecture and middleboxes: Researchers have
leveraged the SDN designs in the context of middle-
boxes for policy enforcement and verification [22, 13],
which is a different goal from RUBIK. Researchers have
also proposed using OpenFlow switches for a variety of
other purposes. e.g., DIFANE [25] and vCRIB [19] use
switches to cache rules and act as authoritative switches.
Again their main focus is quite different from RUBIK.

12 Conclusion

RUBIK is a new load balancer design that drasti-
cally reduces the bandwidth usage while providing low
cost, high performance and reliability benefits. RUBIK
achieves this by exploiting two design principles: (1)
locality: it load balances traffic generated in individual
ToRs across DIPs present in the same ToRs, (2) end-
point flexibility: it places the DIPs closer to the traffic
sources. We evaluate RUBIK using a prototype imple-
mentation and extensive simulations using traces from
our production DC. Our evaluation shows together these
two principles reduce the bandwidth usage by the load
balanced traffic by over 3x compared to prior art Duet.

References

(1]

(2]

(3]
(4]
(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A10 networks ax series.
alOnetworks.com.

http://www.

Broadcom smart hashing. http://http:
//www.broadcom.com/collateral/wp/
StrataXGS_SmartSwitch-WP200-R.pdf.

Embrane. http://www.embrane.com.
F5 load balancer. http://www.£5.com.

Fattree routing using openflow. https://
github.com/brandonheller/ripl.

Ha proxy load balancer.
lwt.eu.

http://haproxy.

Ibm cplex lp solver. http://www-01.
ibm.com/software/commerce/
optimization/cplex—optimizer/.

Loadbalancer.org virtual appliance. http://

www.load-balancer.orgq.

Netscalar vpx virtual appliance. http://www.
citrix.com.

G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. Greenberg, 1. Stoica, D. Harlan, and E. Harris.
Scarlett: coping with skewed content popularity in
mapreduce clusters. In EuroSys 2011.

C. Chekuri and S. Khanna. On multi-dimensional
packing problems. In SODA, 1999.

M. Chowdhury, S. Kandula, and I. Stoica. Lever-
aging endpoint flexibility in data-intensive clusters.
In SIGCOMM 2013.

S. Fayazbakhsh, V. Sekar, M. Yu, and J. Mogul.
Flowtags: Enforcing network-wide policies in the
presence of dynamic middlebox actions. Proc.
HotSDN, 2013.

R. Gandhi, H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang. Duet: Cloud scale load bal-
ancing with hardware and software. In SIGCOMM
2014.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. VI2: a scalable and flexible data center net-
work. In SIGCOMM 2009.

N. Handigol, S. Seetharaman, M. Flajslik, N. McK-
eown, and R. Johari. Plug-n-serve: Load-balancing
web traffic using openflow. ACM SIGCOMM
Demo, 2009.

12

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

V. Jalaparti, P. Bodik, S. Kandula, I. Menache,
M. Rybalkin, and C. Yan. Speeding up distributed
request-response workflows. SIGCOMM, 2013.

N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and
J. Rexford. Niagara: Scalable load balancing on
commodity switches. In Technical Report (TR-973-
14), Princeton, 2014.

M. Moshref, M. Yu, A. Sharma, and R. Govin-
dan. Scalable rule management for data centers.
In NSDI, 2013.

J. Ousterhout, P. Agrawal, D. Erickson,
C. Kozyrakis, J. Leverich, D. Mazieres, S. Mitra,
A. Narayanan, D. Ongaro, G. Parulkar, et al. The
case for ramcloud. Communications of the ACM,
2011.

P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Green-
berg, D. A. Maltz, R. Kern, H. Kumar, M. Zikos,
H. Wu, et al. Ananta: Cloud scale load balancing.
In SIGCOMM, 2013.

Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar,
and M. Yu. Simple-fying middlebox policy en-
forcement using sdn. In SIGCOMM, 2013.

D. Shue, M. J. Freedman, and A. Shaikh. Perfor-
mance isolation and fairness for multi-tenant cloud
storage. In OSDI 2012.

R. Wang, D. Butnariu, and J. Rexford. Openflow-
based server load balancing gone wild. In Usenix
HotICE, 2011.

M. Yu, J. Rexford, M. J. Freedman, and J. Wang.
Scalable flow-based networking with difane. In
SIGCOMM, 2010.

