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Abstract—A primary challenge in exploiting Cognitive Radio
Networks (CRNs), known as the rendezvous problem, is for the
users to find each other in the dynamic open spectrum. We study
blind rendezvous, where users search for each other without
any infrastructural aid. Previous work in this area have focused
on efficient blind rendezvous algorithms for two users but the
solution for multiple users is still far from optimal. In particular,
when two users encounter, one user inherits the other’s hopping
sequence but the sequence is never shortened or split among
the encountering users. We denote this class of algorithms as
uncoordinated channel hopping algorithms. In this paper, we
introduce a new class of distributed algorithms for multi-user
blind rendezvous, called Coordinated Channel Hopping (CCH),
where users adjust, or coordinate, the sequence of channels
being hopped as they rendezvous pairwise. Compared to existing
rendezvous algorithms, our algorithms achieve 80% lower Time
To Rendezvous (TTR) in case of multiple users.

I. INTRODUCTION

The wireless spectrum today consists of licensed and unli-

censed spectrum. Due to the evolution of wireless devices and

WiFi that operate in the unlicensed spectrum, the unlicensed

spectrum is over-crowded. In contrast, the licensed spectrum is

underutilized. Cognitive radio networking (CRN) is a promis-

ing way to improve the spectrum usage. The users in the CRN

are referred as cognitive users (CUs) that operate in a spectrum

licensed to the owners of the spectrum (referred as primary

users or PUs). The CUs use the cognitive radio to identify

unused licensed spectrum (i.e., idle channels) and hop on the

idle channels without causing any interference to the PUs.

A CRN potentially consists of many users. At any given

time, two or more users may wish to communicate with each

other, for which they need to first establish a common commu-

nication channel by somehow tuning in to that channel at the

same instance of time, also known as achieving “rendezvous”.

Designing efficient algorithms for multiple users in a CRN to

quickly achieve rendezvous has been under intensive study in

the past few years.

The rendezvous problem in a CRN is generally framed in

two scenarios in terms of channel availability per user. In sym-

metric scenarios, the set of channels available are the same

for all the users. In asymmetric scenarios, different set of

channels are available to different users. The major challenge

in blind rendezvous is to provide the guaranteed rendezvous

in asymmetric scenarios, as in symmetric scenarios, all users

can just linger on the lowest channel to reach rendezvous.

To date, most of the rendezvous algorithms use either a

central controller or a dedicated channel to aid the users

achieve rendezvous (e.g., [11], [2]). The dedicated channels

are referred as Common Control Channels (CCC). Though

these approaches are simple to implement, they suffer from

several drawbacks: (1) Establishing CCC is not always feasible

because any preselected CCC may be in use by the PUs; (2)

The central control and the CCC do not scale well as the

number of users increases; (3) The central controller presents

a central point of failure.

To overcome the above drawbacks, distributed, blind ren-

dezvous algorithms which do not require a central controller or

a CCC have been proposed. A major class of these algorithms

(e.g., [8] [14]) use the channel hopping (CH) technique, where

the users hop the idle channels using a particular hopping

sequence so that all of them arrive at the same channel in the

same time-slot.

Jump-Stay [8] (JS) is the state-of-the-art distributed algo-

rithm that provides guaranteed blind rendezvous in asymmetric

scenarios. JS achieves the guarantee via a novel technique that

combines channel hopping with a stay stage during which each

user stays on a particular channel for a number of time-slots.

In the multi-user case, each user performs jump-stay as before,

except at each pairwise encounter one user copies the jump-

stay parameters from the other (following an implicit ordering

of the users). After enough pairwise encounters, all users will

have the same jump-stay parameters and hence hop along the

same channel sequence, reaching rendezvous. We thus refer to

algorithms like JS as Uncoordinated Channel Hopping (UCH)

algorithms as the sequence of channels being hopped though

propagated is never shortened or split among the users.

In this paper, we introduce a new class of distributed

algorithms for multi-user blind rendezvous, called Coordinated

Channel Hopping (CCH), where users adjust, or coordinate,

the sequence of channels being hopped as they rendezvous

pairwise. We propose two CCH algorithms, Iterative Intersec-

tion Hopping (IIH) and Divide and Conquer Hopping (DCH).

The two CCH algorithms explore two directions to accelerate

the rendezvous between a new user and existing users which

typically have already achieved rendezvous. IIH focuses on

having the new user quickly meeting the first one of the

existing users, while DCH focuses on quickly spreading the

information about the new user among the existing users. How

to simultaneously optimize both remains an open problem.

Our new algorithms guarantee rendezvous. Simulation studies

show they reduce the time to rendezvous (TTR) by 80% on

average compared to Jump-Stay.

The rest of the paper is organized as follows. Section II dis-

cusses the related work. Section III presents the system model



and notations used in the paper. Section IV and Section V

describe our rendezvous algorithms in two-user and multi-

user scenarios, respectively. Section VI presents performance

comparison, and Section VII concludes the paper.

II. RELATED WORK

The existing rendezvous algorithms can be categories into:

centralized or decentralized.

a) Centralized algorithms: In the centralized algorithms,

a central controller or a base station assists in the rendezvous

process, where the users can contact the central controller and

the central controller can direct the users to the same channel.

The central controller also periodically scans the spectrum,

in order to identify the idle channels. The challenge in the

centralized algorithms is to enable the users find the channels

on which the central controller is operating.

The centralized algorithms can be classified into two classes

based on whether they require pre-selected CCC or not. In the

centralized algorithms that require pre-selected CCC [11] [2],

users contact the central controller using pre-selected channels.

The pre-selected channels are the channels that are reserved

for the control communication with the central controller and

these channels are well known to the users.

Using a pre-selected CCC has several drawbacks that limit

scalability, including: 1) Allocation and maintenance of the

CCC can be costly as the CRN operates in presence of one or

more PU, 2) Congestion on the CCC as a result of increased

traffic when the number of users increases.

The other class of the centralized algorithms do not require

the pre-assigned CCC. One implementation for this class of the

rendezvous algorithms is explained in [6] that uses exhaustive

mechanism for rendezvous.

Though easy to implement, centralized algorithms face

problems that include: 1) Failure of the central controller,

2) Centralized controller may become overloaded and thus

become a bottleneck in case of multiple users.

The decentralized algorithms on the other hand, do not

suffer from the above-mentioned drawbacks, but they are

not simple to implement too. Using decentralized algorithms,

it is challenging to provide guaranteed rendezvous in finite

time. Similar to the centralized algorithms, the decentralized

algorithms can further be classified in to 2 classes depending

on whether they require the CCC or not.

b) Decentralized algorithms that require CCC: [4] [10]

implement the decentralized algorithms that require the CCC

to be given in advance. However, given the uncertain nature of

the availability of channels in the CRN, the availability of the

CCC is not always guaranteed and therefore, these algorithms

requiring global CCC are not always feasible.

The algorithms in [3] [5] [7] [18] take advantage of the

common channels within the vicinities of the users rather than

global CCC to contact their neighbors. These algorithms do

not suffer from the disadvantages of the global CCC, but add

considerable overhead to establish and maintain their CCCs.

c) Decentralized algorithms that does not require CCC:

As the CCC based decentralized algorithms have their lim-

itations, decentralized algorithms that do not require any

CCC are becoming popular among the researchers. These

algorithms are also known as the blind rendezvous algorithms.

In the blind rendezvous algorithms, each user only knows the

channels available to itself in the beginning. Rendezvous can

be achieved on any one of these available channels.

One way to achieve blind rendezvous is by using channel

hopping (CH) techniques. In CH techniques, users hop on the

available channels in a particular way to achieve rendezvous

across all the users in finite time.

The earlier blind rendezvous algorithms such as [14] pro-

vides 3 blind rendezvous rendezvous algorithms: Generated

Orthogonal Sequence (GOS), Modular Clock (MC) and Mod-

ified Modular Clock (MMC). GOS generates random CH

sequence. MC and MMC work on the prime number and

modulo operations. These algorithms select prime numbers

depending on the number of channels available and then pick

up the jump-step less than the prime number. The hopping

sequence is generated based on the jump-step and the prime

number.

GOS and MC algorithms work in the symmetric model for

the two users. However, GOS and MC do not provide the

guaranteed rendezvous in finite time. MMC was proposed to

work in the asymmetrical model where both users observe

different channels available. Again, MMC does not provide

any guarantee for the finite time rendezvous.

Jump-Stay algorithm presented in the [8], [9] builds on top

of the MC. The drawback of the MC algorithm was that the

rendezvous is not guaranteed if the jump-step is the same

for both users. To resolve this problem Jump-Stay algorithm

introduced a stay stage where the users stay on a particular

channel for time-slots equal to the prime number. The Jump-

Stay algorithm thus provides the guaranteed rendezvous for

two users as well as for the multiple users.

As achieving rendezvous is a critical problem in the CRN,

there had been proposals from different prospects. Due to lack

of space, we cannot cite all of the proposals and mention about

the broad class they represent.

One class of the decentralized rendezvous systems is that

doesn’t use CH mechanisms. [1], [6] use leader selection

algorithms to set up an infrastructure to aid the rendezvous

process. Similarly, [12] proposes a grid based method that

promises rendezvous with high probability.

Also, there had been proposals in the wireless sensor net-

work [16], where the rendezvous is achieved using a channel

scanning directed by the link quality. Also, there had been

proposals in spectrum management such as [15], [13] which

mainly focus on the smooth hand-offs to reduce communica-

tion disruption.

Finally, Though most of the work in this area had been

through simulations, a very few implementations have been

done such as [17].



III. SYSTEM MODEL

Our system for the cognitive radio consist of 3 components:

1) Maximum number of channels available (N), 2) Number

of users (L), 3) Symmetry between the channels available to

individual users.

We consider a CRN consisting of L users. L ≥ 2 and all

the users are equipped with the radio. The users in the CRN

operate in a spectrum that is licensed to one or more PUs. This

licensed spectrum is divided into N (N ≥ 1) non-overlapping
channels that can potentially be used by the CRN users and

therefore, N denotes maximum number of channels available

to any user. The channels are uniquely indexed by 1,2,..,N.

This set of potential available channels is denoted by C = {c1,

c2,..., cN}, where ci denotes the ith available channel.

Ci denotes the set of available channels to user i. Note that

Ci can be different than C as there can be some channels in C
that are not available to user i. These channels can be occupied

by the PUs that are operating in close vicinity to the user i.

We call set Ci the working set for user i. For example, let’s

consider a scenario with N = 5 and L = 2. The available

channels are {c1, c2, c3, c4, c5}. It may happen that channels

{c1, c2, c4} are available to user L1 and channels {c3, c4} are

available to user L2. Therefore C1 = {c1, c2, c4} and C2 =

{c3, c4}. As C consists of all the channels available Ci ⊆ C.

Finally, there must be at least one channel that is common

across all the users for the successful rendezvous. This set of

common channels across all the users is denoted by C and

C =
⋂

iCi. It should be noted that by definition, the working

set for each user contain the set C. i.e., C ⊆ Ci. We denote

number of channels in set C by G. Table I summarizes the key

notations used in this paper.

The rendezvous problem can be categorized into 2 different

scenarios based on the number of the users in CRN:

1) 2-user: A CRN where there are 2 users trying to achieve

rendezvous i.e., arrive at the same channel at the same time.

2) Multi-user: A CRN where multiple users (L > 2) are

trying to rendezvous i.e., all the users are trying to arrive at

the same channel in the same time-slot.

For both cases we consider the following two models.

1) Symmetric model: In this model all the channels are

available to all the users. i.e., C = C = Ci for 1 ≤ i ≤ L.

2) Asymmetric model: In the asymmetric model channels

available to both users can be different. Therefore it might be

possible to have Ci 6= Cj for 1 ≤ i, j ≤ L.

In any CRN, users can start at any time. Moreover, in the

blind rendezvous algorithms, users do not have any informa-

tion about other users when they arrive on the network. This

information includes available channels, the hopping sequence,

the starting time. The only information available to each user

is its own working set and the maximum available channels

N. With this requirement, we define the rendezvous problem

as: Given that the CRN consists of L, L ≥ 2 users starting

in asynchronous manner and only with the information about

their own working set, the problem is to form an algorithm to

guarantee that all the users hop the channels without causing

any interference to the PUs, such that they arrive at the same

channel in the same time-slot. Note that, similar to previous

work [8] [14], we focus on the CH algorithms in a time-slotted

system. In practice, in addition to the CH algorithm, other

processes such as beaconing and handshaking are required.

These processes also determine the duration of each time-slot.

The performance of different algorithms can be compared

based on the Time to Rendezvous (TTR) and the guarantee.

TTR is defined as the number of time-slots elapsed before

the rendezvous happens. For the 2-user scenario, the TTR is

measured from the time slot when the 2nd user starts, assuming

that the 1st user starts in time-slot 0.

IV. 2-USER SCENARIO

In the asymmetric model, both users can have different

working sets, i.e., C1 6= C2. Unlike the symmetric case, in

this scenario the users can not simply hop on the smallest

channel as the channel may not be available for both users or

both users may have different smallest channels. Therefore,

each user needs to hop the channels available to it, such

that eventually it can achieve rendezvous with the other user.

We use the Hopping-Sequence (HS) function to generate the

hopping sequence.

1) HS function: This function generates a hopping se-

quence for each round. One round consists of (2 ·P 2 + 2 ·P )
time-slots, where P denotes a prime number (P > N ). 2 · P 2

time-slots constitute the “jump” stage, which is followed by

the remaining 2 · P time-slots constituting the “stay” stage.

In the jump stage, users can hop on different channels in

different time slots, whereas in the stay stage users hop on

a particular single channel. The jump stage is further divided

into P inner-rounds of 2 ·P time-slots each. The intuition for

this design goes to guarantee rendezvous as we explain later

in this section.

HS function generates hopping sequence based on the

parameters shown in table II. The HS function uses 2 random

sequences, which are denoted by LA and LB . Based on the

value of P, LB is generated as a randomly ordered list from

0 to P-1. Both users must have the same LB to guarantee

rendezvous, which is not hard as both the users use the same

N and P. Unlike LB , sequence LA is generated based on the

working set of that particular user. As both users can have

different working sets, LA can be different.

We use r and x such that the users hop on the channel

generated by the equation c = (r · x + t)%P , where c is the

channel index, t is the time. The HS algorithm is run by each

user independently and therefore r and x can be different for

both users.

Formally the channel hopping mechanism is described in

the HS function shown in figure 1. In line 3, t1 specifies the

time with respect to each round. In line 4, r specifies the rate.

We also use r to select the channel to hop during the stay

stage. r is unchanged throughput the round but changes in

every round. In the jump stage, y determines the time with

respect to the inner-round, whereas x determines the offset.

z, which represents the channel index is calculated in line 8



TABLE I
LIST OF KEY NOTATIONS.

Term Definition

N Total number of
available channels

L Total number of cognitive
users

Ci Set of channels available
to i-th user

C Set of all channels.
C =

S

iCi

C Set of common channels
C =

T

iCi

G Number of channels in C

TABLE II
LIST OF PARAMETERS TO

GENERATE HOPPING SEQUENCE.

Term Definition

P Smallest prime number
such that P > N

LA Set of current channels
available

LB Random sequence
between 0 to P-1

r Rate of hopping sequence

y Time relative to the
inner-round

x Offset of entry in the LB

z Channel index

§ HS FUNCTION

1. Input: N , P , LB , LA, t
2. Output: Channel index c

3. t1 ← t mod (2P 2 + 2P )

4. r =
j

t

2P2+2P

k

%P

5. if t1 < 2P 2 then
6. y ← t1 mod 2P

7. x =
¨

t1
2P

˝

-th entry of LB

8. z ← (r · x + y)%P + 1
9. else
10. z = r + 1
11. end if
12. if z is in LA

13. c = z.
14. else
15. c = random channel in LA

16. end if

Fig. 1. Pseudo-code for constructing the hopping sequence.

based on the values of x and y. We use P-modulo to limit the

value of z under P. If the channel indexed by z is in LA, then

z is returned. Otherwise, a randomly chosen channel index is

returned as shown on line 15. In the stay stage, channel index

indicated by r is returned.

A. Rendezvous Guarantee

The rendezvous is guaranteed using HS function because of

the 2 main design choices:

• Use of P > N , so that all the N available channels are

hopped in P time-slots.

• hopping channels according to c = (r · x + t)%P .

Firstly, we prove on why the N available channels are

hopped in the P time-slots.

Corollary 1: All N channels are hopped in the P time-slots.

Proof: t increments for every time-slot, so are t1 and y.

Moreover, in each jump-stage, both r and x remain unchanged.

Therefore during a duration of P time-slots in any jump-stage,

the user will hop on channel (r · x + y)%P + 1, according to

line 8 of figure 1. When y increments by 1 to P , all channels

will be hopped at least once during these P time-slots.

Based on this property we now prove the rendezvous

guarantee for the 2 users.

Theorem 1: The rendezvous is guaranteed for the 2 users

in the asymmetric model.

Proof: We consider the worst case in which there is only

one common channel, whose index is denoted by c∗. The

two users are denoted by user-1 and user-2. With only one

channel in common, rendezvous will be achieved when both

users hop on channel c∗ in the same time-slot. Without loss of

generality, assume user-1 starts before user-2. Therefore when

user-2 starts its “stay-on-c∗” stage (there may be some “stay-

on-c” stages with c 6= c∗ before user-2 decides to stay on c∗

in a particular round), user-1 has already started.

Let l denote the number of time-slots for which the “stay-

on-c∗” stage of user-2 and overlaps with the jump stage of

user-1. Two cases can occur depending on the value of l.

Case 1: l ≥ P as depicted in Fig. 2(a) and 2(b). Since

the overlap is ≥ P , from Corollary 1, user-1 will hop all

N channels, including c∗, during the l overlapped time-slots.

Rendezvous will be achieved when user-1 hops on c∗ since

user-2 is in its “stay-on-c∗” stage.

Case 2: l < P as depicted in Fig. 2(c) and 2(d). There are 2

sub-cases. Case 2.1: In its current round, user-1 also hops on

channel c∗ in its stay stage. This scenario can occur when the

r value chosen in line 4 of Fig. 1 is the same for both users

(in their current rounds). Since both users hop on channel c∗

in their stay stages and their stay stages overlap by 2P − l ≥ 1
time-slots, rendezvous is guaranteed.

Case 2.2: In its current round, user-1 hops on channel c 6= c∗

in its stay stage. For this case, rendezvous will occur during the

jump-jump phase of both users due to the following reasons.

From Figs. 2(c) and 2(d), it can be seen that for user-2,

all P jump stages before its “stay-on-c∗” stage are heavily

overlapped (with overlap being 2P − l ≥ P ) with the P jump

stages of user-1 before its “stay-on-c” stage. Let δ denote how

many times slots has user-1 arrived earlier than user-2. Since

c∗ 6= c, between 0 and P − 1 there exists a unique number ∆
satisfying (c∗ − c)∆ ≡ δ mod P . We claim that both users

hop on the common channel c∗ during the overlapped portion

of the jump stage when the x value in that jump stage is ∆.

The reason is as follows. Let t(2) denote the time-slot when

user-2 hops on c∗ in the jump stage when the x value is ∆. By

Line 8, we must have c∗ = ((c∗ − 1)∆ + t(2))%P + 1 (since

for user-2, c∗ is the stay stage and thus r = c∗ − 1). Also the

timer at user-1 must satisfy t(1) = t(2) + δ. Therefore, at the

same time user-1 hops on

((c − 1)∆ + t(1))%P + 1 = ((c − 1)∆ + t(2) + δ)%P + 1

(a)
= ((c∗ − 1)∆ + t(2))%P + 1 = c∗.

where (a) is due to that ∆ satisfies (c∗ − c)∆ ≡ δ mod P .

As a result both users hop on the common channel c∗ at the

same time. Rendezvous is thus guaranteed.

1) Maximum time to rendezvous: Complexity analysis is

often performed in terms of Maximum time to rendezvous. In

the worst case, there is only one channel common between the

2 users and the users achieve rendezvous in their stay stage as

shown in case 2.1. It can take up to P rounds for the user-1

to hop on c∗. When the user-1 is hopping on the channel c∗,



(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Fig. 2. Different scenarios in 2-user case. The stay stage for both the users
is shown as a shaded region. User-2 hops on the channel c∗ in its stay stage.

§ HS ALGORITHM

1. Input: N
2. Find smallest prime number P, such that P > N
3. Calculate LB based on P and LA based on the working set
4. while (not rendezvous)
5. c = HS(N, P, LB , LA, t)
6. Attempt rendezvous on channel c
7. end while

Fig. 3. HS algorithm to achieve rendezvous.

user-2 can take up to 2 · P 2 + 2 · P time-slots to rendezvous.

This way the maximum TTR possible is: P · (2 · P 2 + 2 · P ).
2) Sensitivity to dynamic PU activity: Cognitive users

operate in the frequency band currently unoccupied by the

primary users. However, the PU activity can be dynamic

wherein a PU can occupy or unoccupy a channel any time.

All the CUs update their working set periodically to account

for the dynamic PU activity. The frequency of the updates

depends on the frequency of the PU activity.

Our algorithm is unaffected by the PU activity as long as

C 6= φ and the rendezvous is still guaranteed within P · (2 ·
P 2 + 2 · P ) time-slots .

3) HS algorithm: HS algorithm uses HS function to gen-

erate the hopping sequence as shown in figure 3. In line 2,

smallest prime number P is found such that P > N . Then

the user formulates the sequences LA and LB . In line 5, HS

function is called, which returns the channel index. Line 5 is

repeated until the rendezvous is achieved.

V. MULTI-USER SCENARIO

In the multi-user scenario, the number of users in the CRN

is greater than 2. In this section we describe our algorithms to

achieve rendezvous among all the users for asymmetric model.

The rendezvous problem in the asymmetric case can be

analyzed by analyzing the expected TTR in a k-user scenario

where a new user Lk+1 arrives on the network when previous

k users have achieved rendezvous. This result can be approxi-

mated to the worst case when the users arrive asynchronously.

As we explain in this section, the rendezvous can occur in the

next time-slot once all k users have working set information

about the Lk+1 user and vice-a-versa.

We divide the timeline for the (k+1) users to achieve

rendezvous in 2 phases:

1) Lk+1 user achieves rendezvous with any one of the k

users. At this point, the user Lk+1 gets the information

about all the k users.

2) The working set of the Lk+1 user is spread among all

the k users.

Therefore, the expected TTR = Time to finish phase (1) +

Time to finish phase (2).

In the multi-user scenarios, the Jump-Stay algorithm makes

the users generate the same hopping sequence as they pairwise

rendezvous. With the identical hoping sequence, users hop

on the same channels1, which is equivalent to only one user

hopping the channels. Jump-Stay algorithm does not take

advantage of two observations:

• Hopping on the common channels (C). As the working

sets for all the users contain C, hopping channels from

C will increase the number of times the users achieve

rendezvous and thus, would reduce the TTR.

• 2 (or more) users after achieving pairwise rendezvous,

can hop independently on different channels in the same

time-slot to accelerate the process to achieve rendezvous

among all the users.

Based on these observations we propose two algorithms

to achieve rendezvous among multiple users to reduce the

completion time for phase (1) and phase (2):

• Iterative Intersection Hopping (IIH).

• Divide and Conquer Hopping (DCH).

A. Iterative Intersection Hopping

The IIH is aimed towards reducing the time for the phase

(2) by taking advantage of observation to hop on the common

channels C. In a k-user scenario, if any of the k users has

achieved rendezvous with the (k + 1)th user, the information

can be spread among the k users quickly if they are hopping

on the common channels.

However, finding C is not trivial in the blind rendezvous

algorithms as the users only know about the channels in their

working set and have no information about the working set

of other users in the beginning. IIH handles this challenge by

changing the working set of the users to their mutual common

channels whenever they rendezvous.

The algorithm has the following two main building blocks:

1) Change in working set: In this algorithm, when the

two users achieve rendezvous, the users can easily exchange

their working sets on the same channel where the rendezvous

was achieved. If user Li and user Lj achieve rendezvous, new

working set for users Li and Lj (Ci and Cj) becomes Ci ∩Cj .

As a user achieves rendezvous with more and more different

users, the working set keeps reducing and finally it will be

reduced to set C. This is because, when user Li achieves

rendezvous with all other users, the working set for Li become

Ci =
⋂

iCi. By definition, C =
⋂

iCi. Therefore Ci = C.

1If the channel is not available to a user, then that user hops on a random
channel in that time-slot. However, if a channel is available to both users,
then they guaranteed hop that channel in the same time-slot.



§ ITERATIVE INTERSECTION HOPPING

1. Input: N
2. Find smallest prime number P, such that P > N
3. Calculate LB based on P
4. Calculate LA based on the working set
5. while (not terminated)
6. c = HS(N, P, LB , LA, t)
7. if (successful rendezvous)
8. Exchange common channels
9. Ci = Ci

T

Cj

10. if (change in working set)
11. Recalculate LA

12. end if
13. Update the user count
14. end if
15. end while

16. c = smallest channel in C

Fig. 4. Pseudo-code for IIH.

Once the working set for all the users become C, the

rendezvous problem for the asymmetric model converges to

the rendezvous problem for the symmetric model and thus the

users can simply hop on the smallest channel in C.

2) User count and information: When the two users ren-

dezvous, they exchange the information about the other users

they have previously achieved rendezvous. This information is

used to terminate the algorithm faster. When user Li achieves

rendezvous with user Lj , the working set for both users

become Ci∩Cj . Later if user Li achieves rendezvous with user

Lk, the working set for user Lk (and Li) becomes Ci∩Cj∩Ck.

As Lk already has its working set reduced to the common

channels between Li, Lj and Lk, it does not need to achieve

rendezvous with user Lj before termination, which eliminates

the need to achieve rendezvous between each pair of users and

importanly, accelerates the rendezvous process.

3) Algorithm: The algorithm is formally showed in the fig-

ure 4. In this algorithm, the users hop the channels according

to the HS algorithm as shown on line 6. Whenever a pairwise

rendezvous happens, both users exchange the channels avail-

able to them to formulate the new working set and recalculate

the LA sequence, as shown on line 11. Also, the users update

their user count as shown in line 13.

4) Expected TTR: To find the expected TTR in the multi-

user scenario, we first calculate the expected TTR for the 2

clients in the following Corollary.

Corollary 2: The expected time to achieve rendezvous for 2

users is N1·N2

C
, where N1 and N2 are the number of channels

in the working set of user L1 and L2 respectively.

Proof: For the two users to achieve rendezvous, they need

to hop the same channel in the same time-slot. The channel

on which the users have achieved rendezvous is denoted

by c. If L1 is hopping on N1 channels, the probability of

selecting channel c is 1
N1

. Similarly, for the user L2, the

probability to select channel c is 1
N2

. Therefore, the probability

for both users to arrive at the channel c is 1
N1·N2

. As there

are C common channels between both users, the probability

to achieve rendezvous in any round is C

N1·N2
. Therefore, the

expected time to achieve rendezvous is N1·N2

C
. Note that, this

expected time to rendezvous applies only when both the users

are in the jump stage.

Using Corollary 2, we now show the expected TTR (ETTR)

for the IIH algorithm in a scenario where (k +1)th user joins

when the previous k users have already achieved rendezvous.

Corollary 3: The expected time for the (k + 1)th user to

achieve rendezvous when previous k users have achieved ren-

dezvous is
Nk+1

Gk+1
+Gk, where Gk and Gk+1 denote number of

common channels between the k and (k+1) users respectively.

Proof: We calculate the ETTR in phase 1 and phase 2.

a) Phase 1: As k users have achieved rendezvous, the

working set of all the users is equal to Ck, where Ck =
⋂

iCi

for i = 1, .., k. Let Gk =
∣

∣Ck

∣

∣, denote the number of channels

in the set Ck. Similarly, Ck+1 =
⋂

iCi for i = 1, .., k + 1 and

Gk+1 =
∣

∣Ck+1

∣

∣.

From Corollary 2, the probability for one of the k users

to achieve rendezvous with the (k + 1)th user is
Gk+1

Gk·Nk+1
.

Therefore the probability for any of the k users to achieve

rendezvous with the (k + 1)th user is 1 − (1 − Gk+1

Gk·Nk+1
)
k
,

approximated to p = 1 − (1 − k·Gk+1

Gk·Nk+1
) = k·Gk+1

Gk·Nk+1
as

Nk+1 > Gk+1. Therefore, ETTR(phase 1) = 1
p

= Gk·Nk+1

k·Gk+1
.

b) Phase 2: The working set for the (k + 1)th user and

one of the k users is Ck+1 at this point. The working set for the

other users is unchanged and it is Ck. Therefore, the expected

time to achieve the rendezvous with one of the remaining users

is
Gk+1·Gk

Gk+1
according to Corollary 2. As the expected TTR for

each user is independent, the ETTR(phase 2) =
Gk+1·Gk

Gk+1
= Gk

and thus,

ETTR(total) = ETTR(phase 1) + ETTR(phase 2) =
Gk·Nk+1

k·Gk+1
+ Gk.

However, as all the k users have Ck as the working set

and if (k > Gk), then there is at least one channel in Gk

being hopped by at least 2 users. If two (or more) users

out of k users are hopping the same channel, then it is

equivalent to one user hopping the channel. Therefore, the

TTR becomes
Gk·Nk+1

k·Gk+1

+ Gk, with k ≤ Gk because Gk

number of channels are being hopped collectively. Therefore

ETTR(total) becomes,
Gk·Nk+1

Gk·Gk+1
+ Gk = Nk+1

Gk+1
+ Gk.

The Jump-Stay algorithm, on the other hand, required
Nk·Nk+1

Gk+1
time-slots because in the Jump-Stay algorithms all

the k users are hopping using the same hopping sequence,

which is equivalent to one user hopping the same sequence.

We show this behaviour in figure 11(a) in our evaluation.

B. Divide and Conquer Hopping

“Divide and Conquer Hopping” (DCH) has a different

principle than IIH. However, it borrows some of the building

block elements from IIH such as hopping on the common

channels. DCH is aimed towards improving the completion

time for phase (1) and phase (2).

The idea behind DCH algorithm is that the spectrum exclud-

ing the common channels (C − C) is divided between all the



users so that the users hop on the common channels as well

as a few of the channels from the (C−C). Therefore, there are
different users hopping different channels in the same time-

slot. When the new user joins the network, the rendezvous can

be achieved faster as there are more channels being hopped at

the same time, where rendezvous can posibilly occur.

When the (k + 1)th user arrives on the k-user network, as

the spectrum is divided equally, number of channels (denoted

by Nc) hopped by the k users is equal i.e., Ni = Nj for i, jǫk.

In phase (1), similar to the IIH, the probability for the (k +
1)th user to achieve rendezvous with any of the k users is p =
k·Gk+1

Nc·Nk+1
. Unlike IIH, as the users in the DCH have working

set containing more channels that C, in the best case, the k

users can be hopping on all the Nk+1 channels. Therefore, it

is possible to achieve p = Gk+1

Nc

when k = Nk+1. Therefore

the expected TTR = 1
p

= Nc

Gk+1
for phase 1, which is lower

that the TTR for the IIH as Nc is formed after division of the

channels and therefore Nc ≤ Nk+1.

In phase (2), as the k users have their working set containing

C, they can spread the information about the (k + 1)th user.

The completion time for the phase (2), will be longer than that

for IIH because the working set for all k users also contain

few more channels that are not common.

DCH algorithm based on above intuition and also has two

components similar to IIH: 1) Working set modifications, 2)

User count and information.

1) Working set modifications: Ci denote the core channels

for user Li. If Li has achieved rendezvous with other (but not

all) k users, then the core channels for Li are the channels

common between Li and other k users.

Cij is a new term that is used for the common channels

between the users i and j excluding Ci. Note that, Ci and Cij

are different; Cij is a set of channels common only between

user i and j excluding C. The working set is modified in the

following way:

a) Core channels: When two users rendezvous pairwise,

both users recalculate their core channels. The updated set of

core channels for user i (and user j) becomes Ci ∩ Cj . As a

user rendezvous with more and more users, the set of core

channels converge to C.
b) Mutually common channels: Whenever user i and j

achieve rendezvous pairwise, they split the channels from the

set Cij equally. If Cij has odd number of channels, then the

user with lower number of channels get the one channel more

than the other user. Splitting the mutually common channels

make the two users to hop those channels separately, but

collectively every channel is hopped.

c) Balancing the channels: The two users also balance

the channels i.e., if user Li has more channels than user Lj ,

then user Lj can take some of the channels from Li. Lj can

take the channels that are available to Lj but are not being

hopped by Lj , instead, they are being hopped by Li.

2) User count and information: Similar to the IIH, when

two users achieve pairwise rendezvous, they exchange the

information about other users they have previously achieved

rendezvous to accelerate the rendezvous among all the users.

§ DIVIDE AND CONQUER HOPPING

1. Input: N
2. Find smallest prime number P, such that P > N
3. Calculate LB based on P
4. Calculate LA based on the working set
5. while (not terminated)
6. c = HS(N, P, LB , LA, t)
7. if (successful rendezvous)
8. Update the core channels (Ci = Ci

T

Cj)
9. Balance the channels
10. Split the mutually common channels
11. if (change in working set)
12. Recalculate LA

13. end if
14. Update the user-count
15. end if
16. end while

17. c = smallest channel in Ci

Fig. 5. Pseudo-code for DCH.

When a user has received information about all other users,

it terminates the algorithm and hops on the smallest channel

in its core channel set Ci. Note that, when all the users have

information about all other users, the working set might be

different but Ci will be equal to C.
3) Algorithm: The algorithm is formally showed in the fig-

ure 5. In this algorithm, the users hop the channels according

to the HS algorithm as shown on line 6. Whenever a pairwise

rendezvous happens, both users exchange the working sets and

formulate the new working set by balancing the channels and

also by splitting the common channels. As the working set for

the users may have been modified after this stage, the users

recalculate the LA sequence, as shown on line 12. In line 14,

the users exchange the information about the other users they

have already achieved rendezvous.

(a) θ = 30% (b) different θ

Fig. 6. Comparing different algorithms for 2-user cases.

VI. EVALUATION

We implemented all the algorithms in C. For both 2-user

and the multi-user case, we compare our algorithm against the

Jump-Stay algorithm from [8].

A. 2-User Case

1) Methodology: For the 2-user case, we generate the

simulation cases by varying the maximum number of available

channels N and the delay between the arrival of 2 users. N is

varied between 0 to 80 in the steps of 10. The delay is varied

between [0, 3 ·N) because the round time for the JS algorithm

is 3 · P . However as the P is not known beforehand, we vary

the delay until 3 · N as N < P . Without loss of generality,



we assume that user L1 arrives in the 1st time-slot, whereas

user L2 arrives after some delay.

For the 2-user case we observe the TTR for all values of

delay and calculate the average. The TTR is measured from

the time-slot when the last user joined the network.

We consider asymmetrical model for evaluation as the

solution for the symmetrical model is trivial.

2) Asymmetrical model: In the asymmetrical case, both

users have different working sets. However, for successful ren-

dezvous, they have one channel in common. In our evaluation,

this common channel is randomly chosen. Also, we assume

that both users have the same ratio of working set to the

maximum available channels (Ci

C
) denoted by θ (0 < θ < 1).

Figure 6(a) shows the average TTR for different values of

N for HS, JS and MMC [14] algorithms for θ = 0.3.
It can be seen that HS performs similar to the MMC

and JS. However, the MMC algorithm does not provide any

rendezvous guarantee, whereas JS and HS does. Therefore, we

conclude that the performance of HS is better than MMC and

similar to the JS in terms of guarantee.

Figure 6(b) compares the performance of the JS and HS

algorithms for different θ. The performance is measured for

θ = 0.1, 0.3 and 0.4. The dotted curves correspond to the JS

and the solid curves correspond to the HS. It can be seen that

HS outperforms JS in most of the cases. The TTR for the HS

is lowered by up to 40%, for θ = 0.4.
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Fig. 7. Comparing TTR for different algorithms, varying L. The TTR values
for the same L are shown at an offset for clarity.
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Fig. 8. Comparing TTR for different algorithms, varying the number of
available channels per user. The TTR values for the same N are shown at an
offset for clarity.

B. Multi-User Case

1) Methodology: For the multi-user case, we vary both the

total number of available channels (N) and the total number

of users (L). For every combination of L and N, we simulate

100 different cases by varying the arrival time of the users.

The arrival time for the first user is 0 and the arrival time for

other users is randomly chosen between 3 · N . The TTR is

calculated from when the last user arrived on the network.

Similar to the asymmetrical model in the 2-user case, we

assume that all the users have same θ = 0.3.

For successful rendezvous, we assume that there is only one

channel common across all the users. It should be noted that

there can be multiple channels mutually common between any

two users but there is only one channel that is common across

all the users. The common channel and the working set for all

the users are randomly chosen making sure that there is only

one common channel across all the users.

a) Comparing IIH and DCH against JS: Now we com-

pare the performance of the IIH, DCH and JS algorithms.

Figure 7(a) and 7(b) compare the average and observed

maximum TTR for different values of L for N = 10 and

N = 70 respectively.

It can be seen that for the fixed N, the average TTR does

not increase with increasing L for all the three algorithms.

However, TTR for the IIH and DCH is significantly lower

than the TTR for the JS. In the average case, the TTR for

the DCH is lowered by 77% compared to JS. The minimum

and the maximum gain of DCH over JS are 52% and 90%

respectively. The gain of DCH over JS increases as the L or

N increase. Also, the maximum TTR for the IIH and DCH is

significantly lower compared to JS.

Now, we evaluate the performance by fixing L and varying

N. Figure 8(a) and 8(b) compare the average and maximum

TTR for different values of N for L = 20 and L = 100.
It can be seen that the average TTR for JS increases rapidly

for increasing N. The TTR for the IIH also increases with

respect to N but at a slower rate compared to JS. The TTR

for the DCH increases with increasing N at the lower values

of L but it remains constant at the higher values of L. This

shows the scalability of our algorithms as N and L increase.

b) Evaluating the performance for different delay values:

We then compare the performance of all the three algorithms

with respect to changing the arrival time. In this scenario, we

vary the maximum arrival time keeping the L and N fixed.

The maximum arrival time varies between 0 to 150 time-slots

in the increment of 10.

We first evaluate the TTR for different values of N keeping

L = 50. Figure 9(a) and 9(b) compare the results for N = 10
and N = 70, respectively.
We then evaluate the TTR for different values of L keeping

N = 50. Figure 10(a) and 10(b) compare the results for L =
20 and L = 100, respectively.
It can be seen that IIH and DCH are more resilient to the

arrival time as the TTR is not affected significantly by the

arrival time of the users, whereas the JS algorithm performs

differently at different arrival time.
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Fig. 9. Comparing TTR against arrival time for L = 50. The TTR values
for the same max. arrival time are shown at an offset for clarity.
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Fig. 10. Comparing TTR against arrival time for N = 50. The TTR values
are for the same max. arrival times are shown at an offset for clarity.

(a) JS (b) DCH

Fig. 11. Rendezvous Points for JS and DCH.

c) Stability: We also evaluate the stability of the algo-

rithms. Stability is evaluated using the TTR measured from the

time-slot when the last (Lth) user arrived on the CRN when

previous L − 1 users have achieved the rendezvous.

To evaluate the stability, we find out more about the

rendezvous pattern for the JS and DCH. Figure 11 shows the

rendezvous pattern for JS and DCH when L = 30 and N = 30.
In this case Lth user arrives in the next time-slot from when

the previous L − 1 users have achieved the rendezvous. The

L − 1 users arrive in the interval 0 to 3 · N .

The X-axis denotes the time and the Y-axis denotes the

rendezvous index. The rendezvous index is calculated as 30 ·
i + j, when users Li and Lj (i > j) achieve rendezvous. As

L = 30, rendezvous index is unique for every pair of users.

The gray dots are marked whenever a pair of users achieve

rendezvous. If X users achieved rendezvous at the same

channel in the same time-slot, then

(

X

2

)

points are marked.

The black dots are marked, whenever a useful information is

gained during the rendezvous. In the JS, the useful information

means if the at least one of the users change its 3-tuple

(r0, i0, t) [8]. In the DCH algorithm, the useful information

means, whenever there is a change in the working set or in

case the user count increases. The arrival time for all the users

is marked by gray triangles on the X-axis.

It can be seen that the DCH took only 9 time-slots, whereas

JS required 62 time-slots to achieve rendezvous. For the DCH,

the useful rendezvous points are scattered from beginning to

the end. For the JS, the rendezvous points in the last 59 time-

slots did not exchange any useful information. Therefore, it

can be seen that DCH is more stable than JS.

VII. CONCLUSION

In this paper, we observe that the state of the art algorithm

is not optimized for the multi-user scenarios. In particular,

when two users encounter, one user inherits the other users

hopping sequence but the sequence is never shortened or

split among the encountering users. We introduce a new

class of distributed algorithms for multi-user blind rendezvous,

called Coordinated Channel Hopping (CCH), where users

adjust or coordinate their sequence of channels being hopped

upon pairwise rendezvous. In particular, Iterative Intersection

Hopping takes the intersection of the two sequences, and

Divide and Conquer Hopping splits the channels common to

the two sequences, upon each pairwise rendezvous. Compared

to existing rendezvous algorithms, our algorithms achieve 80%

lower Time To Rendezvous (TTR) in case of multiple users.
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